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Introduction

MLPerf Storage Benchmark Suite for NVMe SSDs 

Traditionally, SSD performance in data centers has been evaluated based on four key characteristics: sequential read/write 

and random read/write. However, as AI applications diversify, GPU-based systems are interacting with SSDs in increasingly 

varied ways to support operations such as training and inference. In this context, tools like the MLPerf™ Storage benchmark 

offer valuable metrics that reflect how efficiently a storage system can deliver training data during model training.  

A wide range of data center SSDs can be selected to enhance the efficiency of AI platforms. However, the requirements for 

these SSDs require more complex consideration beyond the traditional four key performance metrics typically used for 

evaluation. To better predict and optimize storage behavior in AI workloads, the MLPerf Storage benchmark can be used to 

evaluate deep learning workloads on systems equipped with NVIDIA® A100 and H100 GPU accelerators. 

Workloads from MLPerf Storage 

The comparison presented here utilizes three representative workloads provided by MLPerf Storage. Each workload 

simulates dataset access patterns observed during training in real-world deep learning environments across computer vision 

and scientific computing domains. The benchmark testing can run even in systems without GPUs – the level of compute 

performance of the benchmark can be configured by specifying the type and number of accelerators for each workload, 

which in turn affects the intensity of I/O requests to the SSD under test. 

⚫ 3D U-Net: Medical image segmentation

The 3D U-Net workload is designed for 3D image segmentation tasks. A representative use case of this model is

medical image segmentation. This workload performs large-chunk read operations based on the PyTorch

framework and uses a training dataset in NPZ format.

⚫ ResNet50: Image classification

The ResNet50 workload is designed for image classification tasks using neural networks. It performs read

operations with varying chunk sizes based on the TensorFlow framework and uses a training dataset in TFRecord

format.

⚫ CosmoFlow: Cosmology parameter prediction

The CosmoFlow workload is designed for predicting cosmological parameters from 3D simulation data. It is

characterized by large sample file sizes, while each individual sample remains relatively small. This workload

performs mixed-size chunk read operations based on the TensorFlow framework and uses a training dataset in

TFRecord format.

Model 
Sample file 
size (MB) 

# of samples 
per file 

Framework / 
Data loader 

Format 
H100 
computation time (s) 

3D U-Net v1.0 142 1 PyTorch NPZ 0.323 

ResNet50 v1.0 137 1251 TensorFlow TFRecord 0.224 

CosmoFlow v1.0 2.8 1 TensorFlow TFRecord 0.0035 

When monitoring SSD behavior during sample file processing, it becomes apparent that all workloads exhibit small 

sequential I/O patterns that repeatedly access random addresses. From the SSD’s perspective, these patterns are neither 

purely random nor fully sequential. As a result, SSD performance can vary significantly during workload execution.  

The MLPerf Storage benchmark provides multiple performance metrics to help correlate these I/O patterns with the storage 

system’s processing characteristics. In this paper, we analyze the impact of SSDs on each workload from two perspectives: 

Throughput and Accelerator Utilization (AU). 
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Analyzing Benchmark Results

Throughput 

The throughput metric in the MLPerf Storage benchmark is measured in samples per second: the faster the dataset can be 

accessed, the higher the SSD’s read throughput. The metric generally scales linearly with the SSD’s read throughput, but 

does not represent the SSD’s absolute peak performance. Benchmark results vary depending on the underlying storage 

throughput. 

The specific throughput values generated by the benchmark are influenced by the following behaviors. 

⚫ SSD performance initially increases as accelerators are added, depending on the type and number of accelerators

used.

⚫ As the number of accelerators is increased beyond a certain point, the SSD access becomes a bottleneck and

performance improvement tends to stall when the PCIe bus becomes saturated.

⚫ Depending on the workload processing pattern, there can be a significant gap between the maximum and

minimum throughput (observed samples per second).

⚫ Even under the same test conditions, results between devices may vary depending on the SSD’s read processing

capabilities (such as block size handling efficiency).

In Figure 1, the throughput of the PM1753 SSD is compared to that of its chief competitor. The values shown below represent 

average values obtained over five epochs for each workload. Since the unique I/O pattern of each workload remains 

consistent regardless of the number of accelerators, the maximum performance of each SSD reflects its ability to handle that 

specific pattern. 

The PM1753 SSD demonstrates high performance against its competition under identical load conditions thanks to its 

efficient data processing capabilities, and excels particularly in handling large datasets.

Figure 1: Maximum SSD throughput by workload 

1. The experimental results were obtained without modifying the read thread count parameter from the original workload settings published on

GitHub. Internal experiments confirmed that increasing the read thread count led to higher throughput.
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Accelerator Utilization (AU) 

Accelerator Utilization (AU) indicates how well the GPUs are being kept busy, and is calculated as the ratio of total compute 

time to total benchmark runtime. An ideal compute time is determined based on the batch size, total dataset size, and the 

number of simulated accelerators, and used for the benchmark. The higher the calculated AU, the better the overall system 

efficiency. The specific AU values generated by the benchmark are influenced by the following behaviors. 

⚫ Each workload has a defined AU minimum threshold, which increases as the number of GPUs increases.

⚫ As noted previously, increasing the number of GPUs leads to higher SSD throughput until bus saturation occurs.

⚫ High AU corresponds to high throughput only up to a point. Once the GPUs are fed sufficient data to keep them

occupied, further increases in throughput do not significantly increase AU.

⚫ Consequently, even with the same number of accelerators, AU values differ among SSDs depending on how they

process data access. The maximum number of accelerators for which a given SSD can satisfy the AU minimum

threshold is heavily influenced by SSD logic design.

The relationship between workload performance and the number of accelerators is well-captured by the AU metric. By 

analyzing both AU and throughput, it is possible to assess the maximum performance an SSD can deliver relative to the 

number and type of accelerators used. 

In Figure 2, the AU of the PM1753 SSD is compared to that of its chief competitor.  The information shown represents 

average values measured over five epochs for each workload. The results illustrate how performance varies with different 

accelerator configurations. 

Figure 2: AU per workload when the number of accelerators is fixed 

2. The above experimental results were obtained using the default read thread count as defined in the workload parameters publis hed on GitHub.
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Identifying Inefficiencies 

A key observation in these experiments is that, due to limitations of a given SSD's load-handling capability, there may be a 

point where increasing the number of accelerators leads to inefficiencies—reflected as longer overall execution times. This 

inflection point can be identified quantitatively through the AU value. 

In a real-world multi-GPU training environment, a higher AU indicates shorter overall training time and reduced GPU idle 

time, resulting in improved system efficiency. 

This concept can be more clearly illustrated by examining the processing rate in samples per second (Figure 3) and total 

execution time (Figure 4) for each workload on the SSD. A higher sample rate corresponds to a shorter total execution time. 

Since the computation time per step is fixed by the workload parameters, differences in total execution time are primarily 

determined by the SSD’s I/O processing capabilities. 

Figure 3: Sample rate by workload Figure 4: Execution time by workload 
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Power Consumption 

From the perspective of a real GPU environment, execution time affects not only training efficiency but also the power 

consumption of the H100 accelerators in use. Since each workload assumes a multi-GPU setting, we can estimate energy 

consumption by multiplying the number of H100 accelerators by the total execution time required to process the same 

dataset. Therefore, a shorter execution time implies greater energy efficiency and reduced power usage. 

Figure 5: Power Consumption 

3. For additional details on H100 power consumption, refer to the relevant article on the Power Electronics News website.

4. Actual power consumption values may vary depending on the GPU's idle entry pattern during training.
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Workload Characteristics 

All workloads in MLPerf Storage assume a multi-GPU environment by default, with the number of accelerators explicitly 

specified. Conceptually, each workload accesses a large dataset from multiple GPU hosts. As a result, the order in which each 

GPU accesses the dataset is not deterministic, leading to mixed sequential I/O operations with varying block sizes being 

issued to the SSD. 

This I/O behavior deviates from the conventional four major I/O patterns, and requires more advanced logic at the SSD 

level to handle operations efficiently. 

Although the I/O pattern in Figure 6 may appear entirely random, a closer examination of each I/O group reveals underlying 

sequential read patterns within smaller units. Due to the complexity of the I/O access pattern, the device alternates between 

random and sequential reads. 

This behavior arises from the conceptual model of multiple GPUs concurrently reading large dataset files from the host. As 

the number of accelerators or read threads increases, the complexity of the access pattern can further intensify. 

In future AI training environments involving large sample datasets such as images and graphical data across many GPUs, the 

processing performance of SSDs like the one evaluated above may play a critical role in improving overall training efficiency.

Figure 6: Logical Block Address (LBA) distribution graph of SSD I/O during benchmark execution 

5. The block sizes primarily handled by SSDs are typically 128 KB or larger; however, they can vary depending on the file system  and workload
characteristics.

6. The LBA access distribution differs across the three workloads.
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Conclusion

In the future, SSDs for AI platforms will be expected to support a variety of operating modes beyond those that target current 

standardized performance requirements. These modes will focus on the hybrid sequential-random access patterns essential 

to high-performance AI storage operations. Additionally, the size of datasets used for AI training such as images and videos 

is anticipated to grow significantly, especially in multi-GPU environments. 

In such scenarios, selecting SSDs capable of processing large volumes of data without introducing system bottlenecks will be 

essential to maximizing overall training and retrieval efficiency. 

The MLPerf Storage benchmark results offer valuable insights into future storage requirements. Our analysis of the MLPerf 

Storage workloads reveals that SSDs must handle a variety of block sizes and complex access patterns that may not 

necessarily be optimized in today’s SSDs. 

Samsung’s PM1753 NVMe SSD excels at traditional performance standards while also delivering high throughput and 

capacity optimized for such demanding environments. As AI architectures continue to evolve rapidly, the ability to proactively 

address these emerging performance demands will become increasingly important – and Samsung will remain at the 

forefront of researching these demands and implementing solutions to stay ahead of the needs of AI accelerator toechnology. 

Appendix: Implementation Notes 

MLPerf Storage dataset volumes are structured differently based on the available host memory1. Additionally, the maximum 

performance for each workload can vary depending on the host system architecture. SSD performance may also be 

influenced by the type and number of sample files generated per workload, as well as the type of accelerator used within 

the same environment. Therefore, performance measured in a single environment should not be considered a definitive 

specification of the storage itself. 

In general, the impact of storage becomes more pronounced when evaluated on high-performance servers (e.g., systems 

with more CPU cores, higher per-core performance, and better memory bandwidth). Even with identical parameters and 

SSDs, the sampling rate per second can vary depending on the characteristics of the server used for evaluation. 2 

We did not alter any components of the workload. Instead, we focused on maximizing storage I/O and minimizing execution 

time to obtain optimal test results. Accordingly, we isolated system resources as much as possible and minimized potential 

sources of interference within the evaluation environment during benchmarking. 

PM1753 SSD Test Platform 

Server platform Gigabyte R283-Z95-AAV1 

CPU AMD EPYC™ 9655 (96-Core Processor) 

Memory 256GB 

Storage Samsung PM1753 SSD 7.68TB 

OS CentOS Linux release 8.5.2 

7. Depending on the host memory configuration, the number of datasets generated is adjusted to minimize caching effects.

8. A larger number of datasets increases SSD capacity usage and can also affect sampling throughput.

9. All results are unverified MLPerf v1.0 Storage scores. Results not verified by MLCommons Association. The MLPerf name and logo are registered 
and unregistered trademarks of MLCommons Association in the United States and other countries. All rights reserved. Unauthori zed use strictly 
prohibited. See www.mlcommons.org for more information.
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