

DSS Gen2, High Bandwidth AI Training Storage

Platform

Ronald Lee

Samsung/MSL

San Jose, USA
r2.lee@samsung.com

Harsh Roogi

Samsung/MSL

San Jose, USA

h.roogi@samsung.com

Mayank Saxena

Samsung/MSL

San Jose, USA
mayank.s4@samsung.com

Somnath Roy

Samsung/MSL

San Jose, USA
som.roy@samsung.com

Aaron Lee

Samsung/MSL

San Jose, USA
a.lee03@samsung.com

Abstract

Increasingly, as AI technology evolves into more

sophisticated applications, training dataset sizes continue to

grow exponentially. In order to scale storage and network

infrastructure commensurately to deliver the data required

and avoid unbearable training cycle times, there is a need

for a new storage concept and innovative solution to address

this technology gap. DSS Gen2 and beyond provides a

potential next generation architecture and solution to

alleviate this bottleneck.

Another issue that is major impediment to data center

scaling is power utilization. And since one of the key

storage consumer is data storage, DSS technology not only

plan to optimize server power utilization but also partner

and leverage Samsung’s new high capacity SSDs which has

one of the highest density in the world.

I. INTRODUCTION

An ideal storage solution would be to enable full
bandwidth utilization of existing/available network, server
and storage technologies to deliver high bandwidth data to
AI frameworks. In addition, allowing this platform to scale
linearly as additional network, server and storage
components are added to the infrastructure is a must. This is
the core concept behind DSS Next Generation, using Object
Storage technology + Protocol to simplify network
transactions and then optimizing data transfers from SSDs
through server system to network, where data is directed
onto GPU memories for immediate processing. As faster
network, server and storage technologies comes into
existence, DSS platform aims to take full advantage.

II. DSS GEN2 ARCHITECTURE CONCEPT

 The second generation DSS platform extends the

architecture by enabling direct data transfers from storage to

GPU memories. DSS is unique in that it utilizes proprietary

S3 extended protocol to allow Object Storage systems such

as DSS to be able to leverage RDMA operations. In this

architecture, key value data is transferred directly from SSD

device to GPU memory without incurring any other

overheads. Since DSS stores S3 object data as erasure

coded Key Value chunks on individual Node+SSDs, DSS

Target storage engine only requires Keys and the

corresponding destination GPU RDMA addresses for these

erasure coded chunks to process the respective data

transfers.

In addition, unlike file based storage solutions such as

Lustre and BeeGFS, where if one or more of the scale out

storage nodes fail, erasure code recovery is handled by the

clients. This unique architecture relocates the data recovery

handling to client side instead of burdening storage servers.

This is an important architectural change since erasure code

recovery can cause variety of issues to the storage cluster

including severe performance degradation, reduced ability

to meet quality of service, significant increase of system and

network traffic, and additional CPU/Resource usage of

involved servers and storage devices. Although, this might

look like we have effectively just moved the problem to the

client side, we would argue that this architecture is much

more scalable and provides for predictable environment.

Figure 1: Requires almost 2x Data Movements

Figure 2: Only Requires Single Data Transfer to Host

In this architecture, the erasure code data recovery is

handled by the client/network (note: it is possible to embed

erasure code recovery into the network component for lower

latency and reduce client overheads), this offloads the

storage cluster from having to rebuild the failed data chunks

and thus eliminates significant load from the storage cluster.

Rebuild operations requires data to be transferred between

nodes on the storage cluster and then the resultant data to

the client. This causes at least 2x inflation of network traffic

especially when you are trying to achieve Terabytes/sec

storage cluster bandwidth. In addition, the storage nodes

that are handling the rebuild operations will be burdened

with additional processing and thus less likely to meet any

kind of existing quality of service guarantees.

DSS Gen2 architecture concept allows the storage cluster to

continue operating even during a node or device failure as if

everything was normal except that failed devices obviously

will not be able to transfer any data to the client. However,

the storage cluster can identify which erasure coded data

chunks have failed and notify the client what is missing in

the returned response. The S3 protocol extension also

contains provisions for rebuild operations by allowing

information in the returned response to indicate methods to

rebuild the missing chunks. Thus the client has the

information and knowledge required to rebuild any erasure

coded chunks that are missing. It is possible to handle this

rebuild operation in the GPU, CPU or offload this into the

network using some sort of intelligent NIC/Switch Port.

Obviously, using specialized hardware such as GPU or

Network Component will be desirable to reduce load on

Client CPU.

In this new architecture, storage cluster bandwidth is

preserved during node or device failure where remaining

nodes and devices are still operating at full speeds.

Essentially, failures do not impact other clients that are

sharing the storage cluster and quality of service guarantees

are not impacted since all other traffic is running at full

bandwidth. This is highly important, especially in a shared

AI Training or similar environment where customers might

have multiple concurrent data/model parallel training

operations on-going simultaneously. Although, there will

be an additional burden on the client nodes, this is much

more predictable environment and can be overcome by

having faster client servers/CPU, GPU and related hardware

resources.

Additionally, when the failed nodes and devices are

replaced, it is imperative that the storage cluster minimizes

performance impact during reconstruction of this data.

Fortunately, this can be mitigated by controlling the pace of

data reconstruction and possibly doing this during periods of

reduced storage cluster usage.

Figure 3: Rebuild is performed on Storage Server

Figure 4: Parity Data is transferred to Host for Rebuild

III. S3 PROTOCOL WITH RDMA EXTENSION

 DSS adds RDMA extension to existing S3 protocol to meet

the bandwidth scalability needs as well as squeezing out

every bits/second out of the network to deliver the highest

bandwidth to these applications. Although this is a non-

standard, this approach allows the ubiquitous S3 protocol

which has been adopted by most companies to support high

speed data transfers without the overhead of network

protocols.

Basically, DSS’s concept of using HTTP:S3 w/ RDMA

eliminates overheads inherent in NFSv4 protocol by using

S3 to fetch whole/entire objects without additional metadata

transactions required by NFS and by extending the S3

protocol to support SGL lists, with this approach we can

with one transaction, retrieve the data from storage nodes

and deliver erasure coded striped data chunks directly to

client GPU memory.

In addition, the protocol extension includes the capability to

handle erasure code data recovery on the client server

system as well as offloading it to the network via Smart NIC

or Switch. Using this new approach enables efficient data

transfers from device to client GPU memory for best in class

storage performance

IV. PERFORMANCE BENCHMARK

 First generation DSS presented simple Object Storage and

Key Value based NVMe-oF Storage Targets optimized for

large data transfers using AMD based Dell R7525 Storage

Servers. With Gen2 Architecture, DSS is able to increase

performance by almost 58.2% as shown in the table below.

Eliminating additional data transfer on the DSS Cluster and

moving data via RDMA directly on to host memory, we

have significantly improved the throughput of the entire

system and thus scale the storage cluster.

We used Elbencho benchmark tool created by BeeGFS for

these tests since it is open sourced and easy to understand

the scope of benchmark. The CPU Utilization when

Elbencho benchmark was ran on DGX-A100 client node

was about 8% for Gen2 @39.4GB/s and 19% for Gen1

@20.3GB/s bandwidth achieved. We should note that Gen1

uses TCPIP protocol and incurs much higher CPU

utilization versus RDMA on Gen2. This leaves plenty of

spare CPU resources for the AI Training or similar

application that will need to run on the same DGX-A100

machine to process the incoming data.

In addition, this storage data transfer can be entirely

directed to GPU Memory and reduce any system memory

contention as well as data copy overheads. For these

benchmark tests, we mostly focus our attention to READ

Bandwidth performance since that will be the predominant

work load for these types of applications (WRITE ONCE

followed by READ MULTIPLE). These benchmarks were

done with 1Mbyte S3 Objects which were evenly distributed

across the cluster nodes.

DSS Benchmark
of client

nodes

DSS

Cluster

Nodes

Test

Type

Total

Files/

Objects

Avg BW

(GB/s)

Dell

CPU

Util

Dell

BW

(GB/s)

Dell

R6525

CPU

Util

Dell

R6525

BW

(GB/s)

DGX

A100

CPU

Util

DGX

A100

BW

(GB/s)

Gen1 Elbencho 6 4 GET 60000 100 28% 14.1 8% 15 19% 20.3

Gen2 Elbencho 6 4 GET 60000 158.2 15% 19.7 3% 20.9 8% 39.4
Figure 5: DSS Gen1 vs Gen2 Performance

We utilized 3 different types of client servers to show that

CPU Utilization on clients for DSS Gen2 solution

significantly reduces CPU overheads on both Intel Xeon and

AMD CPU based servers. Notably, on DGX-A100 system

only 8% CPU is utilized while receiving/handling 39.4 GB

of incoming data from Gen2 storage cluster.

We also ran optimized Lustre storage cluster on the same set

of Dell R7525 servers and following results were shown.

System Benchmark

of Client

Nodes

of

Server

Nodes

Test

Type

Total

Files

Avg BW

(GB/s)

CPU

Util

BW

(GB/s)

Gen2 Elbencho 6 6 READ 1000 237 16 39.5

Lustre Elbencho 6 6 READ 1000 147 55 24.5
Figure 6: Lustre vs DSS Gen2 6 Node Performance

In this benchmark test, we used 6 Nodes due to additional 2

MDS nodes that are required for Lustre and thus although

we were able to achieve 147 GB/s bandwidth which is close

to DSS Gen2 numbers if measured on per node basis but we

needed 2 additional MDS servers to achieve it. Also, client

server CPU utilization for Lustre seems to be much higher

than DSS Gen2 which uses the simpler S3 protocol instead.

V. DSS GEN3 PREVIEW

A. Gen5 HW Platform Support

Utilizing the next generation servers, PCIe-Gen5 Samsung

SSDs and 400 Gb/s NICs, DSS will be able to continue to

scale along with latest hardware platforms. We estimate

that Gen5 platform may be able to double the current Gen4

platform performance.

In addition, DSS Gen3 will utilize existing CMB on SSDs to

transfer data directly from SSDs to Host GPU/Memory.

This mechanism will eliminate potential server system

DRAM bandwidth congestion and allow full bandwidth

transfers from SSDs to GPUs to achieve the highest

performance possible.

Furthermore, an intelligent QoS mechanism will allow for

sharing of the bandwidth to support multiple concurrent

bandwidth intensive applications.

B. Samsung SmartSSD based Acceleration

Using intelligent SSD devices such as SmartSSD, DSS

Gen3 platform will provide acceleration features to filter

and transform stored object data on the devices itself before

presenting it to client.

C. WRITE Path Enhancements

In order to improve DSS Write Performance path, existing

Key Value Storage software system will be redesigned and

upgraded. This new Key Value software was architected

based on our past research and experience in benchmarking

our DSS solution.

VI. CONCLUSION

DSS Gen2/3 architecture continues to improve with each

generation. The major objective is to enable latest and

greatest hardware platforms and storage devices such as

Samsung SSDs to scale and provide the highest bandwidth

utilization possible to support major Big Data applications

such as AI/ML which can easily consume many petabytes of

data for sophisticated training operations and intelligent

analytics for businesses, security/surveillance and other use

cases. As of today, petabyte scale data sets can take months

to process which is a significant barrier for doing any type

of development or meaningful research efforts. Although

there are multiple technologies that need to come together to

shorten the test cycle, storage performance is a major

obstacle that must be overcome. DSS technology attempts

to reduce the overall software and system complexity by

focusing on optimizing READ operations for the highest

achievable performance using existing hardware platforms

and devices.

REFERENCES

[1] “DSS, The Open Source [P/T]erabyte Scale Storage
Engine for High Bandwidth Applications – Samsung –
Memory Solutions Lab (samsungmsl.com).

[2] Stephen Pritchard, (2020, April 17), High Performance
Object Storage: What’s driving it ? High-performance
object storage: What’s driving it?
(computerweekly.com)

[3] “NVM Express,” https://nvmexpress.org/.

[4] “Samsung Key Value Document,”
https://www.samsung.com/
semiconductor/global.semi.static/Samsung Key Value
SSD enables High Performance Scaling-0.pdf.

[5] Z. Guz, H. H. Li, A. Shayesteh, and V. Balakrishnan,
“NVMe over-fabrics performance characterization and
the path to low overhead flash disaggregation,” in
Proceedings of the 10th ACM SYSTOR, 2017.

[6] “NKV Library,” https://github.com/OpenMPDK/NKV.

[7] “MinIO object storage cluster,”
https://min.io/resources/docs/ MinIO-high-
performance-object-storage.pdf.

[8] “Amazon S3,”
https://docs.aws.amazon.com/AmazonS3/latest/ dev/s3-
dg.pdf.

[9] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance
distributed file system,” in Proceedings of the 7th OSDI
SYMPOSIA, 2006.

[10] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky,
“MICA: A holistic approach to fast in-memory key-
value storage,” in 11th NSDI, 2014.

[11] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-Trie: An
LSM tree-based ultra-large key-value store for small
data items,” in USENIX ATC, 2015.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P.
Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” in ACM SIGOPS, 2007.

[13] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S.
Swanson, “KAML: A flexible, high-performance key-
value ssd,” in IEEE International Symposium on
HPCA, 2017.

[14] Y. Kang, R. Pitchumani, P. Mishra, Y.-s. Kee, F.
Londono, S. Oh, J. Lee, and D. D. Lee, “Towards
building a high performance, scale-in key-value storage
system,” in Proceedings of the 12th ACM SYSTOR,
2019.

[15] T. Bisson, K. Chen, C. Choi, V. Balakrishnan, and Y.-

s. Kee, “Crail-KV: A high-performance distributed key

value store leveraging native KV-ssds over NVMe-oF,” in

IEEE 37th IPCCC, 2018.

https://samsungmsl.com/publications/dss-the-open-source-p-terabyte-scale-storage-engine-for-high-bandwidth-applications/
https://samsungmsl.com/publications/dss-the-open-source-p-terabyte-scale-storage-engine-for-high-bandwidth-applications/
https://samsungmsl.com/publications/dss-the-open-source-p-terabyte-scale-storage-engine-for-high-bandwidth-applications/
https://www.computerweekly.com/feature/High-performance-object-storage-Whats-driving-it
https://www.computerweekly.com/feature/High-performance-object-storage-Whats-driving-it
https://www.computerweekly.com/feature/High-performance-object-storage-Whats-driving-it
https://github.com/OpenMPDK/NKV

