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Introduction 

NVM Express® (NVMe®) released the ratified technical proposal TP4146a Flexible Data 

Placement (FDP)1 that defines a new method for placing logical blocks into the non-volatile 

storage in an effort to reduce Write Amplification Factor (WAF) by the SSD. This paper provides: 

• A definition for WAF and why it is important to minimize. 

• An overview of the FDP architecture and how it is different from a conventional NAND-

based NVMe SSD. 

• Recommendations for how host software should use FDP to minimize WAF. 

• An overview of the host software stack support for FDP. 

• A comparison of FDP to other data placement methods defined by NVM Express. 

NVM Express 2.0 Family of specifications has defined two other mechanisms for data placement: 

Streams and Zoned Namespace (ZNS). Throughout this paper, differences between the FDP and 

the other mechanisms are identified. 

Streams provides independent paths (i.e., streams) to writing logical blocks to a namespace in 

different NAND. The host performs data placement (i.e., which Stream to write) by specifying the 

stream identifier in the directive of each write command. 

Zoned Namespaces breaks up each namespace into a set of equally sized zones. Each zone is 

associated to physical NAND and corresponds to a sequential set of logical blocks. The host 

performs data placement by the logical blocks specified in a write command which means that 

the logical block address specifies the logical blocks being written and which zone is being written. 

A zone is required to be written sequentially. 

Write Amplification Factor 

The write amplification factor (WAF) is a measure of the amount of write amplification that occurs 

on an SSD, because of the way underlying NAND media works. The simple WAF equation when 

just considering logical blocks written to NAND is: 

WAF = (Number of logical blocks written to NAND by the SSD) /  

   (Number of logical blocks written to NAND by host) 

If the SSD only writes the host logical blocks once, then WAF is 1. If the SSD writes the initial 

host logical blocks more than once, then WAF is greater than 1. 

NAND is internally organized in pages, and data can be written to it only on a page by page basis. 

Whereas, NAND can be only be erased at block level. Typically, a block consists of several 

hundreds of pages and are required to be erased before being written. 

Due to these constraints, when a host writes data to an SSD, the SSD controller may need to 

read, erase, and then write back the data multiple times in order to complete future write 

operations. Ideally, the WAF should be as close to 1 as possible. However, it depends on the 

 
1 https://nvmexpress.org/specification/nvm-express-base-specification/se 
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nature of the workload and the amount of stored data on SSD. A large WAF negatively impacts 

SSD performance and its usable life. Therefore, the SSD controller needs to be designed with 

careful considerations to handle WAF. 

How Conventional NVMe SSDs Work 

FDP was developed as a method to reduce garbage collection by the SSD2.  

Garbage collection is the process by which the SSD makes previously fully written NAND blocks 

available for future host writes by moving any host-written logical blocks from those NAND blocks 

to other NAND blocks (i.e., re-writing host written logical blocks and increasing WAF). This occurs 

in a conventional SSD today because host software has no control of where logical blocks are 

placed in the physical NAND of the SSD and cannot assist in managing this process. 

Figure 1 illustrates a high-level view of a typical SSD. NAND blocks from each NAND die are 

grouped into what is called a superblock. For example, NAND Block 0 from each NAND die 

across all of the NAND channels can form a single superblock. Prior to selecting a particular 

superblock for writing by the host, all of the NAND blocks within the superblock are erased. 

Then, as the host writes logical blocks to the SSD, those logical blocks are buffered by the 

controller until enough logical block data is accumulated that aligns to the write size of a NAND 

block which is less than the size of a NAND block. There are dedicated resources within the 

controller to manage and buffer these written logical blocks to a superblock which are referred 

as a host write resource. At that point, the SSD writes a set of the buffered logical blocks to the 

NAND block (logically appending the logical blocks to the superblock). The process of buffering 

the logical blocks and then writing the logical blocks to NAND blocks in that superblock 

continues until the NAND blocks within the superblock are written to capacity. If the logical 

 
2 https://semiconductor.samsung.com/resources/white-paper/Samsung_SSD_White_Paper.pdf 
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blocks written are associated with different namespaces, then the superblock consists of host 

written logical blocks from different namespaces. 

The SSD manages the writes to the NAND blocks within the superblock in a manner that 

maximizes writing to NAND dies in parallel (i.e., maximizing write performance) while 

maintaining the expected advertised power. 

 

 

Figure 1. Typical Conventional NVMe SSD 

Logically, the writing of logical blocks to a superblock can be represented as appending the logical 

blocks to the previously written logical blocks as shown in Figure 2. The write commands specify 

the namespace and the logical block address within that namespace that are written. Therefore, 

superblocks contain a mixing of logical blocks from different namespaces and the logical block 

address may be non-sequential. 
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Figure 2. Logical view of a Typical Conventional NVMe SSD using Superblocks 

Once a superblock is written to capacity, the SSD selects a different superblock to continue writing 

host logical blocks. Prior to selecting that superblock, the SSD needs to make sure that the 

superblock is erased. But if that selected superblock still contains valid previously written logical 

blocks, then those valid logical blocks are written to another superblock by the SSD prior to 

erasing the NAND blocks in the selected superblock (i.e., garbage collected) as illustrated in 

Figure 3. But what is a valid logical block? 

 

 

Figure 3. Host Write Resource switching to Logical view of a Typical Conventional NVMe SSD 
using Superblocks 

The SSD keeps track of each logical block written to NAND. If the host writes a logical block to a 

namespace, then that logical block is now the valid logical block, and the previous written 

instances of that logical block in the NAND is invalid as that logical block has been overwritten 
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with newer data. These invalid logical blocks may still exist in NAND blocks, but are not required 

to be moved as part of the garbage collection. 

NVM Express has mechanisms for the host to deallocate a valid logical block. The Dataset 

Management command is such a mechanism. When a valid logical block is deallocated, then the 

SSD internally marks that logical block as an invalid logical block and therefore that logical block 

is not required to be moved as part of the garbage collection. 

Since the host has no knowledge of superblocks, the host cannot determine which valid logical 

blocks to either rewrite or deallocate to avoid the garbage collection.  

The theory of data placement is that the host can manage the logical blocks written to specific 

superblocks so that a host can guarantee that logical blocks written to a superblock are invalid 

before the SSD erases the NAND blocks in that superblock for future writes (i.e., removing all 

SSD garbage collection). This provides the host the ability to control the WAF in the SSD even a 

WAF of 1.  

Flexible Data Placement (FDP) 

The NVM Express ratified technical proposal TP4146a Flexible Data Placement provides a new 

data placement mechanism that allows to host to control which logical blocks are written into a 

set of NAND blocks managed by the SSD called a Reclaim Unit. In addition, the host is able to 

write to more than one Reclaim Unit at a time allowing the host to isolate the data written to 

Reclaim Unit per application or even within an application to separate data written that has 

different life cycles (referred to as hot and cold data). 

The following is an overview of the FDP architecture as shown in Figure 4 that has the following 

components: 

• Reclaim Unit (RU): A set of NAND blocks that a host may write logical blocks. 

• Reclaim Group (RG): A collection of Reclaim Units.  

• Reclaim Unit Handle (RUH): A resource within the SSD to manage and buffer the 
logical blocks to write to a Reclaim Unit (i.e., a host write 
resource). A namespace is allowed to access to one or 
more RUHs. If a namespace has access to more than one 
RUH, the host is allowed to write to multiple RUs at the 
same time. 

• Placement Handle: An index into the list of Reclaim Unit Handles accessible 
by namespace that is defined at namespace creation. 
Host writes to that namespace can only access the 
Reclaim Unit Handles in that list. 

• Endurance Group: A collection of NAND blocks that endurance is managed 
as a single unit with the intention that the NAND blocks 
wear out at the same time (i.e., SSD life). In a typical SSD, 
there exists a single Endurance Group. 

• FDP Configuration A host selectable configuration that may be enabled that 
defines the Reclaim Unit size, number of Reclaim Groups, 
the number of Reclaim Unit Handles, and other 
information not addressed by this paper. 
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• Data Placement Directive A directive in a write command that uses the Directive 
Specific (DSPEC) field in that command to identify the 
Reclaim Unit Handle and Reclaim Group. The host is 
requesting that logical blocks for a write command be 
place in the Reclaim Unit referenced by the tuple of 
information. If a write command does not specify this 
directive, then the SSD uses Reclaim Unit Handle 
associate with Placement Handle 0h and selects the 
Reclaim Group to place the logical blocks. 
 

 

Figure 4. Multiple Reclaim Group Flexible Data Placement Architecture 

Data placement by the host for a write command is illustrated in Figure 4. At namespace creation, 

the host specifies a list of Reclaim Unit Handles accessible to by that namespace. Each write 

command to that namespace that specifies the Data Placement Directive uses the Directive 

Specific (DSPEC) field to specify the Reclaim Unit to place the logical blocks being written.  The 

Placement Identifier specifies a Reclaim Group and an index into the list of Reclaim Unit Handles 

accessible to by that namespace (i.e., Placement Handle).  The Reclaim Unit that is being 

referenced by the Reclaim Unit Handle in the Reclaim Group is where the host is requesting the 

logical blocks to be written. 

A Reclaim Unit can be thought of as a superblock but the host is provided the size of the Reclaim 

Unit and can manage which logical blocks are written to a Reclaim Unit which is not available in 

a conventional SSD. A Reclaim Unit is similar to a zone in Zoned Namespaces (ZNS) with the 

exception that there is no state machine associated to the Reclaim Unit and the host may: 

• Write logical blocks randomly into the Reclaim Unit; and 
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• If different namespaces share access to the same Reclaim Unit Handle, then logical blocks 

from those namespaces may be written to the same Reclaim Unit. 

If the SSD is managing NAND blocks using superblocks, then there is a single Reclaim Group as 

shown in Figure 5. In this case, the SSD is managing the actual writing of logical blocks across 

the NAND dies and will maximize parallelism. If the SSD is managing NAND blocks per NAND 

die, then there is a Reclaim Group for each die giving the host the ability to write the a Reclaim 

Unit within a specific NAND die.  In this case, host software is managing the writing of logical 

blocks to NAND dies and is responsible for managing the writing of data across all of the NAND 

dies. 

 

Figure 5. Single Reclaim Group Flexible Data Placement Architecture 

The ability for namespaces to share access to the same Reclaim Unit Handle is important for FDP 

to claim backwards compatibility. Backwards compatibility is the ability to plug an SSD that has 

FDP enabled into a server that is not aware of FDP and that server is able to write logical blocks 

without getting an error. A ZNS SSD is not backwards compatible as the host is required to have 

ZNS knowledge to be able to write the SDD.  

Designing in backward compatibility into the FDP architecture is crucial in giving a host the option 

on planning how to modify the host software to take full advantage of FDP and fully manage the 

garbage collection of the SSD. For example, FDP can be enabled on an SSD and inserted into a 

server that does not understand FDP. Host writes to namespaces causes the SSD to select the 

Reclaim Unit Handle and Reclaim Group to place the logical blocks to a Reclaim Unit. Since FDP 

is enabled, the host software can be modified at any time the host wants to change their software 

to support FDP. 
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The set of Reclaim Unit Handles is analogous to an SSD supporting multiple streams where write 

commands may specify the Stream Directive to indicate the write resources to use for writing the 

logical blocks. FDP provides the host the ability to know if writes are aligned to the Reclaim Unit 

by issuing an I/O Management Receive command to determine how many logical blocks are 

available to be written to the Reclaim Units currently being referenced by the Reclaim Unit 

Handles accessible to a namespace. The NVMe Streams capability has no mechanism for the 

host to determine the current alignment. ZNS has the number of active zones which is analogous 

to the set of Reclaim Unit Handles. 

To obtain a WAF of 1 by the SSD using FDP, host software has to overwrite or deallocate all of 

the logical blocks written to a Reclaim Unit before the SSD is required to erase the NAND blocks 

in that Reclaim Unit for future writes.  

If the host is rewriting logical blocks prior to the SSD requiring to perform garbage collection on 

the previous written data for those logical blocks, then by the time the SSD would perform garbage 

collection, all of the previously written data is invalid and the SSD does not have to move the 

logical blocks; therefore, no host action is required. Otherwise, the host has to track each logical 

block written to each Reclaim Group. For those logical blocks that have not been rewritten or 

deallocated, the host is required copy those logical blocks to another Reclaim Unit to avoid 

garbage collection by the SSD. In this case, the SSD WAF is 1 for that Reclaim Unit, but the 

system incurs an increase in WAF as the host was required to move the logical blocks instead of 

the SSD as part of garbage collection. 

  

Figure 6. FDP Reducing WAF 

Figure  is an illustration of two namespaces having access to two different Reclaim Unit Handles 

which means that when the host initially writes logical blocks to those namespaces, the logical 

blocks for the different namespaces are isolated in different Reclaim Units. In this example: 

• Reclaim Unit 0 was previously written to capacity with logical blocks for Namespace 1.  
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• Reclaim Unit 1 is the current Reclaim Unit being written by Reclaim Unit Handle 0 and future 

writes to Namespace 1 are written to this Reclaim Unit. 

• Reclaim Unit 2 was previously written to capacity with logical blocks for Namespace 2 but the 

host has either rewritten the logical blocks in another Reclaim Unit or has deallocated the 

logical blocks. 

• Reclaim Unit 3 was previously written to capacity with logical blocks for Namespace 2.  

• Reclaim Unit 4 is the current Reclaim Unit being written by Reclaim Unit Handle 1 and future 

writes to Namespace 2 are written to this Reclaim Unit. 

Because the host causes all logical blocks in Reclaim Unit 2 to be invalid, then when the SSD 

requires to use the NAND associated with Reclaim Unit 2 for future writes, the SSD has no valid 

logical blocks to copy to another Reclaim Unit meaning there is no WAF increase as opposed to 

Figure 3. Figure  also illustrates the separation of namespace logical blocks making it easier for 

the host to track the LBAs to Reclaim Units. 

Logical blocks with similar data life (i.e., called temperature) should be written to the same 

Reclaim Unit so that all of the logical blocks should become obsolete (i.e., invalid) at around the 

same time due to being re-written or deallocated. 

Refer to Samsung’s OCP Global Summit 2022 FDP presentation 3 if additional understanding of 

FDP is needed. 

Investing in obtaining the best SSD WAF  

From a systems perspective, designing a NVMe-base data placement solution to reduce WAF 

presents a trade-off, as there are several alternatives in the standard. Specifically, the comparison 

between Zoned Namespaces (ZNS) and FDP becomes particularly interesting. 

ZNS is a strict interface that requires the host software stack fully support ZNS. To use an SSD 

supporting ZNS, that host is required to port all affected host software to use the strict ZNS 

interface. A ZNS SSD is not able to be used in a server that does not support ZNS (i.e., it is not 

backwards compatible to a conventional SSD. 

In our experience, ZNS is well-suited for solutions built from the ground up that can guarantee 

sequential writes, fixed size objects, write error handling, and a robust I/O completion path to 

handle anonymous writes using the Append Command4. This is because this approach removes 

the indirection layer present in traditional Flash Translation Layers (FTLs), and at the same time 

allows zones to be mapped to system representations (e.g., objects). In this system, ZNS allows 

to fully leverage the TCO advantages of the technology. However, systems where any of the 

above is difficult to guarantee, our recommendation is to be wary of the amount of work required 

in the host software stack. This is especially relevant when these solutions introduce indirection 

layers to bypass any of the requirements imposed by ZNS. Examples include (i) host-side FTLs 

 
3 OCP Global Summit FDP Presentation recorded on YouTube, 
https://www.youtube.com/watch?v=ZEISXHcNmSk&pp=ygUXZmxleGlibGUgZGF0YSBwbGFjZW1lbnQ%3D 
4 Dayan, Niv, et al. “Modelling and Managing SSD Write-Amplification.” ArXiv.org, 1 Apr. 2015, arxiv.org/abs/1504.00229. Accessed 18 Oct. 
2023. 

 

https://www.youtube.com/watch?v=ZEISXHcNmSk&pp=ygUXZmxleGlibGUgZGF0YSBwbGFjZW1lbnQ%3D
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to translate a small amount of random writes into sequential writes, (ii) indirections to support in-

place metadata updates, or (iii) sub-zone mappings to enable variable object sizes. In our 

experience with real-life deployments, the WAF introduced by these software layers surpasses 

the benefits of the ZNS interface. 

FDP is a more flexible interface that enables the host software stack to introduce incremental 

benefits. This gives system designers an explicit trade-off between the desired WAF and the 

investment in the engineering effort.  

In our experience, FDP is well-suited for retrofitting existing applications that follow software data 

placement policies, which can then be communicated to the device in exchange for a WAF benefit. 

These types of applications are already deployed, they are not always sequential, deal with 

objects of different sizes, and rely in robust, existing I/O paths. Changes to these applications are 

difficult as they support existing infrastructure. Here, FDP will in most cases not provide a perfect 

alignment leading to WAF 1. Instead, FDP will make it possible to leverage host data separation 

to improve end-to-end WAF incrementally. System designers will be able to evaluate the 

engineering effort required to improve WAF and take this as yet another metric to compute their 

engineering return on investment (ROI). 

At Samsung, we have successfully implemented FDP support for Cachelib and RocksDB and 

have been able to quantify WAF benefits with minimal application changes. At the time of this 

writing, this support is currently being upstreamed. Refer to Figure 7 and Figure  for measured 

WAF with Cachelib at varying SSD utilizations where the SSDs were pre-conditioned prior to the 

measurement. 

 

Figure 7. Cachelib results with 50% SSD utilizations 
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Figure 8. Cachelib results with various SSD utilizations 
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Computing Return on Investment (ROI) with FDP 

Reducing the WAF of the SSD improves the endurance and performance of the SSD. Storage 
systems commonly do not fully utilize the SSD Capacity to achieve acceptable levels of 
endurance or performance. Not fully using the SSD capacity increases the over-provisioning 
(OP) thus lowering WAF. This is an expensive proposition since the cost of the SSD capacity is 
not utilized for storage. The relationship between OP and WAF depends on the workload; 
however, the WAF of random write workloads is well understood and can be approximated 
using well-known mathematical methods as illustrated in Figure 9. The technique used to derive 
the graph is a Lambert equation method for a random write workload.   Refer to reference 
papers5 for further detail.  Contact Samsung for specific product WAF information. 
 
 

 
Figure 9. WAF as a function of OP 

As an example, if a random workload is experiencing a WAF of 5.7 at an OP of 10% but endurance 

is required to be increased by 2X, WAF must be reduced by half. OP of approximately 23% is 

required to achieve WAF of 2.85. The additional 13% OP is lost SSD logical capacity. 

OP = SSD physical capacity/logical capacity – 1 

Another reason a system may increase OP is to improve the performance of random writes. A 

WAF > 1 requires SSD garbage collection. Garbage collection involves reading and writing valid 

logical blocks from a NAND block prior to erasing that NAND block for future writes. This internal 

work reduces the performance of the SSD. The reduction in random write performance can be 

approximated with a simple equation that takes into account the extra internal garbage collections 

read and write traffic. 

Random write performance at WAF of N = RWPN 

RWPN = RWP1/(1 + (WAF-1)*1.1) 

 
5 Peter Desnoyers, Analytic Modeling of SSD Write Performance. 
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Furthermore, random mixed read/write workloads can be modeled under the assumption that 

available SSD resources, such as NAND die, are equally available to be utilized by both reads 

and writes. There is no WAF impact to 100% read workloads. The performance impact of WAF 

increases as the percent of writes increases. 

  

Figure 10. Normalized Random Performance 

Repeating the example above and using Figure 10, if a workload is encountering a WAF of 5.7 

and assuming a read/write ratio of 70/30, its normalized performance is 0.3. Reducing WAF to 

2.85 increases normalized performance to 0.5. An approximate 67% increase in performance but 

at the same expense as above; OP increased from 10% to 23%. 

FDP is an alternate way to improve the endurance and performance of a SSD. How much WAF 

can be lowered by converting a system to FDP is a function of the host workload; therefore each 

workload may have a different solution when modifying the software to support FDP. Workloads 

that (partially) sequentially write or can be converted to sequential writing will generally benfit the 

most. As one example use case, CacheLib was utilized to assess the improvements to WAF. 

“CacheLib is a C++ library for accessing and managing cache data. It is a thread-safe API that 

enables developers to build and customize scalable, concurrent caches. It is targeted at 

applications that dedicate gigabytes of memory to cache information6”.  

CacheLib issues both metadata and data writes. Example CacheLib workloads were converted 

to support FDP by using a dedicated Reclaim Unit Handle for (small) metadata and a different 

 
6 “CacheLib.” Cachelib.org, cachelib.org/. Accessed 18 Oct. 2023. 
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dedicated Reclaim Unit Handle for (big) data. This conversion required minimal effort for FDP 

since CacheLib inherently sequentially writes a large portion of its data. Other systems may 

need to alter the nature of how data is written and trimmed/unmapped to align to FDP. For this 

particular example, no other host software changes were required. Small data is effectively 

written randomly while big data is written sequentially. The sequentially written data is 

overwritten thus encounters a WAF of 1. The device OP is applied to the random data by the 

SSD since it is not being used for the sequential data. Since the capacity of the random data 

written is relatively small, a few percent of SSD capacity, the device OP is able to achieve a 

WAF of close to 1 even for the random data. Converting to FDP dramatically improved the 

observed SSD WAF. Note that the system still encounters non-device based WAF for its 

internal log-structured write methods. FDP did not impact the non-device based WAF. 

 

Figure 11. CacheLib WAF 

Figure 11 illustrates the observed WAF improvement with FDP on CacheLib. SSD WAF 

dramatically improved from approximately 3 to 1. The endurance improvement directly scales with 

the improvement in WAF. Performance improvements are a function of the read/write ratio. This 

workload is dominated by approximately 90% reads. Using the translation provided by Figure 10 

normalized performance increased from 0.74 to 0.96. If this increased performance is consumed 

then the lifetime of the SSD is impacted by the increased write activity. FDP conversion enabled 

increased performance of (0.96/0.74 = 1.3) and increased life of 3/1.3 = 2.3. Note: increased life 

is based on DWPD rather than warranty period. Note that the performance improvement 

estimates only include the impact of WAF.  Vendor specific FDP implementation design decisions 

may impact performance. 

Other workloads and systems are bound to exhibit different gains and value propositions. 

CacheLib analysis of FDP indicated very significant value. Analysis of another log-structured 

workload has also reaffirmed that FDP gains are not isolated to CacheLib. 
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FDP and the Host Software Stack  

FDP is supported in several parts of the Linux ecosystem as shown in Figure 12. 

 

Figure 12. FDP Support in the Linux Ecosystem 

In the Linux kernel, FDP leverages the I/O Passthru interface 7- an asynchronous path based on 

io_uring to the NVMe generic character device that allows user-space applications to directly 

access the Kernel NVMe driver, bypassing the block layer. This means that applications can 

leverage an end-to-end architecture similar to SPDK [8], but using the in-kernel NVMe driver 

instead. This simplifies the host stack as it removes the need to deploy and manage user-space 

drivers, delegating this responsibility to the operating system. I/O Passthru is fully supported in 

the Linux kernel since version 6.2. 

In user-space, both xNVMe8 and SPDK9 provide full support for FDP. xNVMe enables FDP in 

different storage paths by leveraging the SPDK NVMe driver and the I/O Passthru. The ability to 

connect FDP-enabled SSDs with standard storage interfaces makes adoption easy for application 

developers and storage infrastructure architects. FDP is also present in widely used tools such 

as fio and nvme-cli, which enable respectively testing and management. 

From an application point of view, FDP is supported in Cachelib. Here, FDP allows to separate 

Cachelib’s two caches: BigHash – the cache for small items, and BlockCache – the cache for big 

 
7 “SDC2021: Enabling Asynchronous I/O Passthru in NVMe-Native Applications.” Www.youtube.com, 
www.youtube.com/watch?v=mtiQlPZsw4w. Accessed 18 Oct. 2023. 
8 “XNVMe: Cross-Platform Libraries and Tools for NVMe Devices.” GitHub, 29 Aug. 2023, github.com/OpenMPDK/xNVMe. 
9 “Storage Performance Development Kit.” GitHub, 29 Aug. 2023, github.com/spdk/spdk. 

https://github.com/spdk/spdk
https://github.com/OpenMPDK/xNVMe
https://github.com/spdk/spdk
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items. By separating these two caches, Cachelib can achieve better WAF10. The changes to 

Cachelib are minimal and are contained within Cachelib itself – no changes are needed to the 

applications on top of Cachelib. 

From an emulation perspective, FDP is fully supported as of QEMU11 version 8.0. Using QEMU, 

operating system and application developers are free to develop in advance of FDP-enabled 

SSDs becoming widely available. 

Comparing FDP to Streams and ZNS 

Table 1 provides a side-to-side comparison that shows that FDP is the most flexible for allowing 

host software to achieve the best WAF based on investment on adapting host software. The 

following paragraphs provide details of the rows highlighted in orange. 

FPD was architected to complete a host issued write command that does not conform to the 

defined protocol and to provide feedback to the host that such a write did not conform to the 

protocol. For example, if a host issues a write command that the identified Reclaim Unit Handle 

and Reclaim Group in the Data Placement Directive is invalid, then the write is completed by the 

SSD and is placed in a Reclaim Unit accessible to the namespace selected by the controller and 

the event is logged in an FDP event, if enabled by the host. If the host issues a write to an invalid 

Stream the command is aborted. If a host issues a write command to a ZNS namespace that 

crosses a zone boundary, then the write command is aborted. 

Both Streams and FDP enabled SSD can be removed from a server and plugged into an older 

server and would just work. The older server is able to create namespaces and write to 

namespaces without any errors. That is not true with ZNS. A ZNS SSD can only operate in a 

server that understands ZNS. 

 
10 “Overview: A Random Walk down the Cache Library | CacheLib.” Cachelib.org, 
cachelib.org/docs/Cache_Library_Architecture_Guide/overview_a_random_walk/. Accessed 18 Oct. 2023. 
11 https://gitlab.com/qemu-project/qemu 

 
 

https://gitlab.com/qemu-project/qemu
https://gitlab.com/qemu-project/qemu
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Table 1 Comparison between Streams, FDP, and ZNS 

 

In Conclusion  

This paper discusses FDP architecture and presents a compelling case on how FDP can help to 

improve the performance and endurance of an SSD. An example of CacheLib is demonstrated to 

show how FDP can help to achieve WAF of a SSD closer to 1.  

All measured data shown in this paper is collected from Samsung’s next-generation PM9D3 

datacenter SSD. Samsung is collaborating with our customers and partners to support FDP in 

future products. For more information contact Samsung support. 

This paper also shows Samsung’s commitment to the development of FDP and continuing the 

advancement of host stack in supporting FDP. 

Disclaimer: The performance analysis shown in this paper only considers the impact of WAF and 

does not include any specific FDP implementation choices. 
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