
Veronica Lagrange
Memory Solutions Lab
Samsung Semiconductor, Inc.
San Jose, U.S.A.
veronica.l@samsung.com

Harry (Huan) Li
Memory Solutions Lab
Samsung Semiconductor, Inc.
San Jose, U.S.A.
harry.li@samsung.com

Anahita Shayesteh
Memory Solutions Lab
Samsung Semiconductor, Inc.
San Jose, U.S.A.

Modeling Analytics for
Computational Storage

Modeling Analytics for Computational Storage 2

Abstract
Next generation flash storage will be armed with a substantial amount of computing power. In this
paper, we investigate opportunities to utilize this computational capability to optimize Online Analytical
Processing (OLAP) applications. We have directed our analysis at the performance of a subset of TPC-DS
queries using Apache Hadoop clusters and two database engines, Apache SPARK-SQL and Presto1. We
model the expected speed-up achieved by offloading a few operations that are executed first within
most SQL plans. Offloading these operations requires minimal cooperation from the database engine,
and no changes to the existing plan. We show that the speed-up achieved varies significantly among
queries and between engines, and that the queries benefiting the most are I/O heavy with high selectivity
of the “needle in the haystack” variety. Our main contribution is estimating the speed-up anticipated
from pushing the execution of a few key SQL building blocks (scan, filter, and project operations) to
computational storage when using read optimized, columnar Apache Parquet format files2.

CCS Concepts
• Computing methodologies → Modeling and simulation → Model development and analysis → Model
verification and validation;
• Hardware → Communication hardware, interfaces and storage → External storage;
• Information systems → Data management systems → Database management system engines →
Database query processing → Query planning;
• Information systems → Data management systems → Database management system engines → Online
analytical processing engines;

1 Presto is a registered trademark of Facebook, Inc.
2 An earlier version of this report will appear in the Proceedings of ICPE 2020.

Modeling Analytics for Computational Storage 3

Keywords
Columnar Database, Parquet, SQL, Smart Storage, acceleration, offloading, TPC-DS, Spark, Presto, OLAP

1 Introduction
Current developments in “big data” storage solutions gear towards moving data processing closer to
where the data resides, reducing unnecessary movement and speeding up data processing considerably.
Computational storage is an emerging trend where a comparatively large amount of data processing
occurs inside the storage layer. Examples of new devices exposing flash storage internal computing
power include Samsung’s SmartSSD [1], NGD Systems [2], and ScaleFlux [3]. This new functionality signals
performance improvement opportunities for I/O heavy workloads containing operations amenable to
being completed near the storage source. One of the most critical types of database analytics – OLAP –
well exemplifies this type of opportunity. It is typically very I/O intensive and contains quite a few building
blocks that may be seamlessly moved to, or executed by, a computational storage device.

Offloading is not a new concept. Network processors, GPUs and recently machine learning specialized
processors are widely used to accelerate specific compute kernels while freeing CPU resources. We will
show that the offloading of many more time-consuming operations from the host CPU to storage improves
both workload performance and system efficiency. The immediate benefit, of course, is a sizeable decrease
in I/O volume. This reduction in I/O leads to less host resource utilization, which not only improves
performance of individual queries, but also increases server capacity. Besides database operations, other
frequent operations that can be executed near the storage device include encryption and compression.

Database analytics workloads are especially read-intensive. It is not uncommon for I/O reads to take 90%
or more of the total execution time. Offloading some of that to storage reduces I/O bandwidth along
with other host resource usage, and may improve performance considerably. Furthermore, SSDs have an
internal bandwidth that is much higher than that which is exposed to the host computer through existing
channels (SAS, SATA, PCI-E, etc.) [4], which means that computational storage has a large amount of
untapped potential to exploit.

This paper discusses the expected performance benefits of offloading some important basic database
operations – namely Scan, Filter and Project – to computational storage. We evaluate the performance
estimate model using TPC-DS workload and two database engines running on Hadoop clusters: SPARK-
SQL and Presto.

This paper is organized as follows: after covering previous computational storage database offloading
work, we explain the OLAP workload selection, and the configuration of our two clusters. In Section
IV we dive into TPC-DS characteristics and examine the overall performance from running on the two
Hadoop clusters, which have been the focus of our experimentation. In Section V, we explain our modeling
methodologies, and in Section VI we describe and analyze results from that modeling. Specifically, we
show how a substantial speed-up from computational storage optimization can depend on multiple
factors. Finally, we briefly discuss other SQL building blocks amenable to computational storage
pushdowns, and conclude.

Modeling Analytics for Computational Storage 4

2 Previous Work
Most previous work on pushing SQL functions down to computational storage concentrate on specific
functions of a specific Database Engine. Summarizer [5] modifies the existing NVMe command interface
to implement four operations: initialize variables or set queries; read data and execute computation; read
data and filter – the selection case; and the transfer of the output results to the host. From their case
studies, using 3 TPC-H queries and a very small scale factor (100MB – 0.1SF), we determined that they
could do similarity joins as well. They compare different degrees of computation offloading for these three
queries. The authors show that somewhat complex computations can be carried out near storage, and
briefly discuss the data integration problem: how to combine data from different formats and sources.
They concentrate on one specific integration problem: similarity join, and describe the heuristics they use.
Left unanswered is the bigger issue on how to integrate truly distinct formats.

YourSQL [6] is based on MariaDB. YourSQL allows for complex query operations to be offloaded to a smart
SSD in the form of an ISC task. That paper spends the bulk of its time talking about optimizer heuristics.
One very interesting observation, from the authors’ performance analysis is that while your typical SQL
application – OLTP or OLAP – cannot exhaust an NVMe bandwidth, its near-storage implementation can.

Biscuit [7] is what YourSQL uses to enable its computational storage operations. It provides the user
application with C++ APIs. The user’s SSD-side C++ program with Biscuit APIs, called an SSDlet, is loaded
in the device. A host-side program invokes and coordinates execution of the SSDlet tasks using libsisc;
communication is done by linking input and output ports to specific tasks. Here they also claim that the
APIs used to access files are nearly identical to standard libraries.

ExtraV [8] is IBM’s effort at computational storage for graph processing based on their CAPRI [9]. This
paper describes an FPGA prototype that executes common graph traversal functions near the device. It
works like virtual memory for graph applications, as it provides the host with the illusion that the entire
graph lives in memory, while it is actually partly stored and compressed in an SSD. The authors have stated
that graph processing is mostly done in memory, either in single servers or clusters, and that it cannot be
done efficiently when graphs grow beyond the available memory.

PG-Strom [10] is an accelerator for PostgreSQL that offloads part of the SQL workload to a GPU. Supports
Joins and Aggregates. However, by the time of that publication [10] all data fed to the GPU came from
main memory (not storage).

Neteeza was the first successful product to use FPGAs as computational storage computing accelerators
for analytics data engines. It does not require any software installation or tuning. Just plug and play.
Neteeza database engine is based on Postgres [11], and implements four functions in its FPGA engine:
Compress, Project, Restrict and Visibility. Francisco [12] claims that Neteeza’s engine decompresses
data at wire speed. Project and Restrict operations filter out columns and rows, respectively, based on
the parameters in the SELECT and WHERE clauses of a query. The Neteeza Visibility engine is focused on
database integrity, and therein, filters out rows that should not be seen by the query, such as any rows
being inserted by a transaction that has not yet committed.

Modeling Analytics for Computational Storage 5

Computational storage has also attracted interest beyond SQL and database applications. For example,
REGISTOR [24] is an FPGA platform applying regex search, on-the-fly, to any file being transferred from an
SSD to the host; INSIDER [25], also an FPGA-based drive controller, exposes a virtual file system with em-
bedded programmability, allowing programmers to push down operations customized to the application’s
specific needs.

3 Workload and Setup
Here, we explain the TPC-DS benchmark, as well as the two cluster configurations used in the experi-
ments described. Moreover, we describe the two database engines (SPARK-SQL and Presto), and explain
the rationale behind using the Parquet file format to offload SQL operations to computational storage.

3.1  TPC-DS
“The TPC Benchmark DS (TPC-DS) is a decision support benchmark that models several generally appli-
cable aspects of a decision support system” [13].

TPC-DS contains 24 tables, organized as a snowflake schema. It contains 6 very large FACT tables, and
many small DIMENSION tables. Furthermore TPC-DS is comprised of 99 queries, each one representing
a different business question. So, even though this is an artificial benchmark, it tries to mirror real-life
applications. Schema is scalable, with the smallest being 1GB and the largest 100TB. The 1GB dataset is
used for QA only. Performance is measured in Queries per Hour @ Scale Factor (QphDS@SF), and must
include multiple tests (pertaining to power, throughput, and data maintenance). In this study, we con-
sider a subset of the power test. For a more detailed explanation of the TPC-DS benchmark, we refer the
reader to [14].

TPC-DS has been around since 2007, but did not catch up until recently and after a major re-write, with
the first published official report dated March 2018 (Cisco) [15]. As of January 2020, there are only six
official reports published. Nonetheless, subsets of TPC-DS are heavily used informally by the industry to
demonstrate up and coming trends [16][17]. TPC-DS is one of many Transaction Processing Performance
Council (TPC) benchmarks [18], and as such covers enough general OLAP cases to be useful to practi-
tioners.

Because FACT tables are orders of magnitude larger than DIMENSION tables, we will gravitate towards
queries that are “FACT table Scan heavy,” as opposed to queries that are “DIMENSION table Scan heavy.”

Modeling Analytics for Computational Storage 6

3.2  Test Configuration
Two clusters are used in this paper, and since they are configured to run SPARK-SQL and Presto, we refer
to them simply as the SPARK-SQL cluster and the Presto cluster. Each has eight data nodes with differ-
ent hardware. The detailed configuration is listed in Table I. Both engines use Apache Hive Metadata,
and the Parquet file format.

SPARK-SQL is Apache Spark’s high-level tool for structured data processing [19]. It is an in-memory,
distributed, RDBMS that understands SQL and a Dataset API (available in Java and Scala). User
applications interface with SPARK-SQL via a command-line module, JDBC or ODBC. SPARK-SQL also
supports reading and writing data stored in an existing Apache Hive installation.

Presto is a distributed SQL query engine designed to query large data sets distributed over one or more
heterogeneous data sources [20]. Presto provides a CLI interface, and query processing (parser, planner,
scheduler), but will use data and metadata provided by other software components (Apache HBase,
Apache Hive, MySQL, etc.). Presto interacts with these other components via connectors, and this is its
claim to fame as it is possible to combine multiple, different data sources into one query seamlessly.
There is no need for very expensive ETL (Export-Transform-Load) datasets in order to analyze them.
Similar to classic massively parallel processing (MPP) DBMS [21], Presto is a distributed system that runs
on a cluster. Presto client submits SQL statements to a master daemon coordinator. Using metadata

Table 1 - Cluster Configuration

Spark-SQL Presto

Intel (R) Xeon (R)
Gold 6152 CPU @

2.10GHz

Intel (R) Xeon (R)
CPU E5-2699 v4 @

2.20GHz
Data Node
Hardware

256GB 256GB to 1024GB

2x NVMe SSD 3.2TB 3x NVMe SSD 1.6TB

Linux Kernel 4.13.0 Linux Kernel 4.x.x

2.3.0 0.205

2.7.3 2.9.0

1.2.1000 1.2.2

1

10000Scale Factor
TPC-DS

Hive

SPARK-SQL/Presto

Local Storage

Memory

CPU

PaquetStorage Format

HDFS Replication

HadoopSoftware Stack

OS

Modeling Analytics for Computational Storage 7

from connectors, the coordinator parses the query, generates the plan, and then schedules and coordi-
nates how it is executed by the workers. Workers get data from connectors, execute assigned tasks, and
deliver results to the client. All processing happens in memory, and data is pipelined across the network
between different stages.

Parquet is an open source columnar file format that was designed to be used with OLAP systems [22].
The Parquet file format is READ optimized, as inserts or updates can be expensive operations. It was
inspired by the “Dremel” paper [23], and is extensively used in the Hadoop ecosystem. Furthermore, each
Parquet disk file contains the table’s schema. This feature resolves the issue of the device being aware
of the table metadata, a requirement for any computational storage processing. Furthermore, existing
Parquet readers are capable of projecting and filtering certain data types using statistics provided in
metadata. Implementing some functionality in a computational storage device is complementary and in
addition to the existing pushdown capabilities of Parquet.
TPC-DS queries are downloaded from the TPC website and results were verified against sample output
from the TPC. All queries run sequentially as a single test job. Before each query, the memory cache is
cleared. In addition,
• SPARK-SQL is restarted before every query
• Presto is restarted before the job

4 TPC-DS Characterization
In this section, we discuss the many stages (or fragments) of the execution plan generated by the query
optimizer. Next, we show SPARK-SQL and Presto query runtime results for TPC-DS. We list them side by
side to show that they behave differently in order to illustrate and explain the different speed-ups that
one might see for the same query executed with different engines. Next, we examine the concept of Scan
Ratio, and how we use it to characterize and rank queries.

4.1 Typical TPC-DS query plan
SQL query plans are composed of basic building blocks. They form an execution tree. Each building block
typically focuses on one specific operation, and is scheduled by a SQL engine. How these building blocks
are assembled dictates query performance. Main building blocks include: Scan, Filter, Project, Aggregate,
Sort, Join, Merge, Union. Figure 1 (A) illustrates a typical query sequence, with building blocks being exe-
cuted from top to bottom. Figure 1 (B) is the building block sequence created by the SPARK-SQL planner
for TPC-DS Query 44.

Modeling Analytics for Computational Storage 8

The functionality of some building blocks includes:
• Scan: Read database content from storage to compute
 host memory and apply any needed transformations
• Filter: Filter table rows in memory with giving criteria
• Project: Select table columns in memory
• Join: Combine two tables based on given criteria

(A) Generic SQL query plan

Figure 1 - SQL query plans

(B) SPARK-SQL plan for Query 44

Modeling Analytics for Computational Storage 9

4.2 Performance of all queries
Figure 2 shows the runtime for all TPC-DS queries for SPARK-SQL and Presto. With 10TB dataset, SPARK-
SQL completes 91 and Presto completes 61 queries. Both database engines store all intermediate results
in memory, and the queries that failed incurred an “out-of-memory” error. The query runtime has a wide
range from less than a minute to many hours. We have not matched our cluster hardware configurations
for SPARK-SQL and Presto, as it is not our goal to compare the performance between them. The point of
this paper is to showcase a subset of the many different system parameters influencing the potentially
substantial speed-up afforded by computational storage devices. We demonstrate that even though
computational storage can provide impressive speed-ups, the benefits vary significantly depending on
many other parameters such as table size, selectivity, query plan, etc.

In the following sections, we will select five queries from each cluster based on system characterization
of the queries and potential offload benefits, and provide further analysis of each.

4.3 Scan Ratio
Scan Ratio is defined as the total CPU time spent on a database Scan operation, divided by total CPU
time consumed by the query. The CPU time is reported by query planner from database engine. This time
is not the wall clock time and should not be confused with query runtime.

For TPC-DS queries, the Scan Ratio ranges from near 0% to ~93% on SPARK-SQL and up to nearly 100%
for Presto. In Figure 3, queries are sorted by their Scan Ratio, from left to right. Q9, with the highest Scan

Figure 2 - TPC-DS runtime query comparison

Query Runtime (sec.)

Modeling Analytics for Computational Storage 10

Ratio, is furthest to the right. Notice that most CPU intensive queries have a small Scan Ratio, but not
all. Some complex queries, such as Q44, are both compute and I/O intensive.

High Scan Ratio does not necessary mean the query reads more data from storage, it only indicates that
time spent on I/O is higher relative to other query operations. For example, Query 45 has a total disk
read of ~1.3TB, its Scan Ratio is only 2.99%. But for Query 9, which has the highest Scan Ratio of ~93%,
total disk read is only ~105GB. Although the total query runtime difference is not large (Q9, 212.36 sec,
Q45, 176.02 sec.), the CPU cycles spent on non-I/O operations caused the Scan Ratio to be lower for Q45.
A high Scan Ratio indicates that a query is a strong candidate for computational storage optimization,
since its I/O operations are likely to be in its critical path, while a low Scan Ratio indicates that opera-
tions other than I/O are the bottleneck.

5 Offloading Model
Here, we explain how we selected each plan stage to be offloaded to computational storage, followed
by a detailed description of the model methodology used with both database engines. Notice that the
methods are somewhat different, which we chose to do in order to cover more aspects of the offloading
process.

Modeling Analytics for Computational Storage 11

5.1 Offloading components (or kernels)
In this section, we exploit opportunities to offload operations from host to computational storage. In
order to execute a query, data flows from the leaves of the plan to the root. Usually the leaves contain
some form of SCAN operation: table rows and columns are read in (usually from disk, unless this data
was previously cached). The SCAN operation usually includes some sort of data transformation, from
the format on disk to the one understood by the database engine. Once a table is scanned (or sometimes
while the table is being scanned), rows may be filtered or projected. Next plan steps may contain aggre-
gates, sorts, joins, window functions, or other advanced data transformations. Operations near the leaves
will generally be “easier” to push down to computational storage. Basic SCANs, FILTERs, and PROJEC-
TIONs may happen with virtually no change to the database engine query plan. More aggressive push
down optimizations are possible, but require the cooperation of the database engine, and re-factoring of
the query plan.

For example, in Figure 1 (B), we observe this pattern in both FACT table and DIMENSION table I/O. By
combining “Scan,” “Filter” and “Project” into a new building block, we can estimate the performance
benefit of offloading this new building block (“Scan/Filter”) to computational storage. Regardless, with
“Scan/Filter” offloading, the SPARK-SQL plan for Query 44 still looks the same.

Figure 3 - TPC-DS Scan Ratio and CPU utilization

Modeling Analytics for Computational Storage 12

5.2 SPARK-SQL model methodology
The performance estimate model for SPARK-SQL is based on how the database engine plan is executed
– in stages with dependencies. We assume there is no resource limitation on the number of stages that
can be executed concurrently.

For example, Figure 4 shows a generic query that involves 3 tables, 1 DIMENSION table and 2 FACT
tables. Stage-0 reads the content of the DIMENSION table, while reading FACT tables happens in Stage-1
and Stage-2. Then, Stage-3 and 4 sort the results from Stage-1 and 2. The results are subsequently
passed to Stage-5 for the final Join operation.

First 3 stages (0, 1 and 2) include Scan/Filter/Project operations as marked with light dot shade in Figure
4. The time spent on the operations are 1, 5 and 8 seconds respectively, and could be offloaded to
 computational storage. The offloaded execution time is calculated as:
• Reserve 1 second for offloading-related handshaking. The reserved time is an arbitrary number.
• Assumes that the Filter runtime on the device is at wire speed and can be omitted. This is an opti-
mistic assumption that provides an upper bound for our analysis. The actual Filter runtime depends on
compute/IO capabilities of the device, and can be further improved with pre-processing in the device.
• Time-of-result data transfer between the device and the host as calculated based on the device Read
bandwidth specification; in this paper, 3GB/sec has been used.

Figure 4 - Query Stage Scheduling

Modeling Analytics for Computational Storage 13

With these assumptions, the example execution time can be reduced from 18 seconds to 12 seconds
(see Figure 5).

As the most fundamental step in building the estimate model, we need to know the time spent for Scan/
Filter/Project on each SPARK-SQL query stage. Fortunately, with SPARK-SQL the log file provides the
following key logging information (Figure 6):

	 • MeasWClock : The Stage wall clock runtime
	 • ThrTime : Total execution time for the stage from all execution threads. This is not
 wall clock time
	 • ThrTime : The execution time break down for Scan, Filter, Project

With the above information, the estimated time spent on Scan/Filter/Project can be calculated as

		

In addition to Scan time, we also consider the following:
	 WClockTime - The time to initialize computational storage for offloading. We always as-
sume one second for the estimation calculation.
	 WClockTime - The time required to transfer the results from the offloading device
back to the host. It is calculated based the Read bandwidth of the computational device. In our model,
the Filtered result is usually less than 0.5% of the results that are unfiltered. It would take only a frac-
tion of a second to read back to the host, therefore we ignored it this time.
	 With Parquet format, we assume that no Project operation or Project time is omitted.
With the above assumption, the estimated stage runtime with offloading for SPARK-SQL is calculated as:

Figure 5 - SPARK-SQL Offload Model

EstWClockTime WClockTime EstWClockTime= +

MeasWClockTime
ThrTime

ThrTime
EstWClockTime =

Modeling Analytics for Computational Storage 14

5.3 Presto Model methodology
To model push down benefits of Scan/Filter/Project operations, we create and populate smaller tables
we call “model tables.” These “model tables” contain only the rows and columns that would be selected
by a computational storage engine executing the Scan/Filter/Project operations defined by the query.
We repeat the query using the model table, and compare results against the same query using the
original tables – see Figure 7. For Presto, both original and model queries generate the same query plan.
Similar to our SPARK-SQL model, the performance difference is the upper bound of the speed-up that a
computational storage device would yield, because this model assumes that the storage device would
be capable of filtering and projecting rows and columns at wire speed. However, if we take into consid-
eration the higher internal flash storage bandwidth [4], this is a realistic approximation of the expected
speed-up.

Figure 6 - One SPARK-SQL Query Stage with Statistics

Modeling Analytics for Computational Storage 15

Figure 7 - Presto Offload Model.

6 Offloading Evaluation
Here, we describe in detail the query selection process, and give a high-level view of the results obtained
by the modeling of both database engines. Furthermore, we present side-by-side analysis of the expect-
ed speed-up for a few selected queries.

Modeling Analytics for Computational Storage 16

6.1 The queries
In this study, we picked five queries from each configuration for deep analysis. The queries were selected
based on where they fall on the different quadrants of the Scan Ratio versus a CPU utilization chart (see
Figure 8) to cover a wider range of characteristics. Because we focus on offloading Scan/Filter/Project,
we want queries that are I/O intensive and show high selectivity when filtering and projecting FACT
tables. That is, we look for queries of the “needle in the haystack” variety. Three of the queries (Q9, Q44,
and Q75) are found in both studies, while the other two are found exclusively in either SPARK-SQL or
Presto. We chose this approach because, due to their different architecture and optimizer, interesting
queries in one environment are not necessarily interesting, or possible, in the other. For example, Presto
cannot execute Q4 (out-of-memory error).

Using the chart in Figure 8, we selected the following five SPARK-SQL queries for analysis: Queries 9 and
44 have high Scan/Filter ratio; Query 4 has high CPU utilization; Query 72 has the longest runtime and
higher CPU utilization; and Query 75 has a balanced Scan/Filter ratio and CPU utilization.

Based on our analysis of the query plans generated by Presto, we believe that Query 44, Query 49, and
Query 76 are the natural candidates for near storage FILTER because they are the ones that filter out the
largest portions of FACT tables. Furthermore, these are all SCAN heavy queries (Figure 8). Another two,
Query 9 and Query 75, are on the “Top Ten” Presto list both in terms of Scan operations and complexity
(number of fragments, or stages), and are queries that appear in the SPARK-SQL study.

Figure 8 - SPARK-SQL Scan Ratio vs CPU utilization

Modeling Analytics for Computational Storage 17

6.2 Characterization and performance summary – SPARK-SQL
Table 2 summarizes the characterization and offloading estimation for the SPARK-SQL queries identified
above. We did not find any cluster NVMe Read bandwidth bottleneck. The highest peak Read bandwidth
is ~2GB/sec. for Query 75, which is less than 3GB/sec of the NVMe Read bandwidth specification.

For some queries, the CPU utilization can become the bottleneck at several stages. In the presence of a
computational storage device, the CPU utilization should benefit from Scan/Filter offloading, but we did
not explore this topic for SPARK-SQL, and in our model we assumed that CPU utilization is unchanged by
Scan/Filter offloading.

The benefit of Scan/Filter offloading ranges from no speed-up to ~8.17x in query runtime. Scan Ratio,
CPU utilization and SQL execution plan all contribute to this speed-up, and will be analyzed in detail in
sub-section 6.4 below.

Table 2 - SPARK-SQL Computational Storage Model Results

Modeling Analytics for Computational Storage 18

6.3 Characterization and performance summary – Presto
Figure 9 shows speed up for 10 queries we modeled, including the 5 selected queries we analyze in
detail. Presto speed-up from computational storage modeling varies from no speed-up for queries that
are not I/O bound, to an impressive 59.3x for Query 44. Let’s look at how this happened. In Table 3, we
list the primary characteristics and system metrics for each selected query. For Presto, CPU utilization is
never above 80% busy for the queries tested. Most issues arise from less than optimal query plans, and
the queries that failed ran out of DRAM memory.

Figure 9 - Summary Presto Speed-up

Table 3 - PRESTO Computational Storage Model Results

Modeling Analytics for Computational Storage 19

6.4 Characterization and performance details – SPARK-SQL
 and Presto
Now let’s examine the SQL plan, CPU, and I/O for the seven queries described in section 6.1 above.

Query 9 is the Highest Scan Ratio SPARK-SQL query, and one of the highest for Presto too (see Figure 8).
Both SPARK-SQL and Presto follow the same query plan for Q9: They scan and filter the same FACT table
15 times with differing filter values. An Aggregation operation follows each Scan/Filter, the results are
used for final joining with a DIMENSION table. All 15 FACT table Scan/Filter stages start simultaneously
and are followed by their Aggregation stage (see Figure 10). Within the Scan/Filter stage, the first half
involves most I/O operations (Scan), and the second half mostly performs the Filter function. Although
all 15 Scan/Filter stages start at the same time, because of SPARK-SQL executor limitations, not all work-
ers get scheduled immediately. Some stages have to wait for resources. This is reflected in the I/O chart
(Figure 10). The I/O bandwidth peaks at the beginning. As the stages start Filter operation, CPU get
busier and I/O bandwidth decreases. As the stages complete and release resources to the next waiting
stage, I/O bandwidth goes up and CPU utilization goes down. We see this I/O spike after four Scan/Filter
stages complete.

Figure 11 illustrates the offloading performance estimate of computational storage with SPARK-SQL.
Blue bars show the measured stage execution time and red bars show the estimated stage execution.
Stage dependency is unchanged.

Figure 10: SPARK-SQL Query 9 CPU
Utilization and Cluster Read Bandwidth

SPARK-SQL Stage Start/Stop Time

Modeling Analytics for Computational Storage 20

In our study, we only model Scan, Filter and Projection, but Query 9 also stands to benefit from Aggre-
gate Pushdown, since the 15 scans result in 15 single, aggregated values. Because the Presto schema
partitions table store_sales by ss_quantity, Query 9 does not significantly benefit from FILTER. The gains
observed at the higher scale factor happen because of an artifact of the Presto model process. For Query
9 with 10TB dataset, the total I/O ratio between the original query and the Presto model is comparatively
small: 1.54x. This I/O savings is not enough to justify the 5.3x speed-up observed at 10TB (Table 3). Our
hypothesis is that this was caused by the modeling, which generated five smaller tables – while the
model reads from five different tables (each three sets of workers reads from one table), the original
query reads 15 concurrent times from one table. To reinforce this point, notice that the I/O savings ratio
of the second largest Presto speed-up -7.3x for Query 76 at 10TB, is 62.66x (see Table 3).

However, Query 44, is the one query displaying dramatic speed-ups from Presto modeling. This happens
because we have a lot of filtering that is increasing at scale. Query 44, which scans FACT table store_
sales four times, is filtering rows where column ss_store_sk is equal to 2. With 1TB dataset, Query 44
uses only 0.15% of store_sales rows, and with 10TB dataset, it uses only 0.13% of store_sales rows. For
both SPARK-SQL and Presto, Query 44 is a High Scan Ratio query with a CPU-intensive query operation.
Notice that Presto and SPARK-SQL plans for Query 44 are different (Figure 12). The SPARK-SQL plan
is smart enough to see a repeat subquery, execute it only once, and to broadcast the small dimension
table. Presto plan is not scalable, and benefits immensely from the I/O savings afforded by the computa-
tional storage speed-up.

Figure 11: Query 9 SPARK-SQL Stage Breakdown with estimation

Modeling Analytics for Computational Storage 21

Figure 12: Query 44 plan compare

Figure 13: SPARK-SQL Query
44 CPU Utilization and Cluster
Read Bandwidth

SPARK-SQL Stage Start/Stop Time

Modeling Analytics for Computational Storage 22

For SPARK-SQL, Query 44 has other CPU intensive operations, such as Sort and Join, and its average
cluster CPU utilization is at ~54%, but because of SPARK-SQL’s worker scheduling, not all Data Nodes are
utilized. See, for example, in Figure 13, the 3rd fact table Scan/Filter in Stage 5 only uses up to four Data
Nodes. Data Node D9 is idling while D10 is nearly saturated. We do not explore the offloading impact on
CPU cycles for SPARK-SQL, but moving Filter operation to computational storage should relieve Data
Node CPU utilization and further improve performance. SPARK-SQL speedup for Q44 is 3.61x (Figure 14).

For Presto, Query 49’s model response time is 6.1x faster than the original query, our third best result.
Response time went from 12+ minutes to 2+ minutes (see Table 3). Query 49 reads in 4.5 times more
bytes than its model, and this savings impacts both response times and CPU utilization, which becomes
more efficient with the model: average CPU busy % went from 24 with the original query to 41 with the
model.

SPARK-SQL Query 75 is a balanced query with all six FACT tables being used plus two DIMENSION tables.
All FACT table Scan/Filter processing can benefit from computational storage offloading, but some stag-
es are CPU bottlenecked (see Figure 15), and the SPARK-SQL speed-up for this query is 2.07x (Figure 16).
Similarly, Presto Query 75 scans all six FACT tables, but there is no filter opportunity, just projection. Still,
even though there is no speed-up for Presto, at 1TB we see excellent speed-up at 10TB: query response
time went from 26 minutes to 13+ minutes. This result shows that the Parquet reader used by Presto may
not be adequately implementing projection, while the Spark Parquet reader is doing so.
For Presto, Query 75 behavior is similar to Query 9. Both queries display no speed-up with the 1TB

Figure 14: Query 44 SPARK-SQL Stage breakdown with estimate

Modeling Analytics for Computational Storage 23

dataset, but modest gains with the 10TB dataset. Query 75 shows less speed-up than Query 9 at 10TB.
From Figure 17, we see another interesting pattern: both the original and model show a barrier around
three minutes before query completion, when all CPU and I/O utilization for all servers is near zero. This
moment is identified by a vertical green bar in Figure 17. The elapsed time gain from the model happens
before that barrier ― the original query runs for about 23 minutes while the model runs for about 10
minutes. From Figure 17, we see that the model is handling less I/O both before and after the barrier, but
no elapsed time gain is observed after the barrier. Query 75 total I/O ratio between the original and the
model is only 1.5x.

Query 4 is SPARK-SQL’s most CPU-intensive query. It uses three FACT tables and one DIMENSION table
with many Sort, Join and other operations. These operations saturate cluster compute resources and the
CPU becomes the bottleneck (see Figure 18). Presto cannot execute Query 4 with the 10TB dataset – it
gets an “out of memory” error. Because most query runtime is spent on CPU-intensive, non-I/O opera-
tions, the Scan/Filter offloading benefit is limited to 9% as shown in Figure 19.

Figure 15: SPARK-SQL Query
75 CPU Utilization Cluster
Read Bandwidth

SPARK-SQL Stage Start/Stop Time

Modeling Analytics for Computational Storage 24

Figure 16: Query 75 SPARK-SQL Offloading estimate

Figure 17: Query 75 Presto CPU and I/O activity

Modeling Analytics for Computational Storage 25

Figure 18: SPARK-SQL Query
4 CPU Utilization and Cluster
Read Bandwidth

Figure 19: Query 4 SPARK-SQL
Stage breakdown and estimate

SPARK-SQL Stage Start/Stop Time

Modeling Analytics for Computational Storage 26

Presto Query 76 filters and scans the three largest FACT tables (store_sales, web_sales, and catalog_
sales). Furthermore, the selectivity is significant: only 4.50% of table store sales, 0.03% of web_sales,
and 0.50% of catalog_sales are used after the filter operation. Consequently, we see excellent speed-
ups for Presto at both scale factors. At 10TB, query response time went from 5+ minutes to 43 seconds,
with the total I/O ratio between the original and the model an impressive 62.66x (see Table 3).
Query 72 has the longest runtime of all TPC-DS queries. It has 10 Join operations, and they are scheduled
almost sequentially by SPARK-SQL within a single stage. Compared to the total runtime, the time spent
on I/O counts only a small fraction. Because offloading is applied only on I/O, for this query, we observed
no performance gain when offloading Scan/Filter.
Overall, for the computational storage operations being considered, everything is impacted by the
selectivity of each filter and projection operation yield. And those yields can be substantial. For example,
Query 44 reads 530 times more bytes than its model.

8 Thoughts on offloading other components
SCAN, FILTER, and PROJECTION are SQL operations that can be easily pushed down to computational
storage. They are the proverbial “low hanging fruit.” There are other operations that also wisely might be
pushed down to computational storage, though some require cooperation from the database engine. For
example, some aggregates, such as SUM, COUNT, MIN, MAX, are amenable to being pushed down even
in a distributed environment. Other aggregates, such as AVERAGE and MEAN, can be partially pushed
down, and would require active participation of the database engine. Furthermore, some JOINs, such as
broadcast-join, can be pushed down. In the case of TPC-DS, for example, if dimension table DATE_DIM
was replicated for all storage devices and its JOIN operations to fact tables were pushed down, this could
potentially benefit 90% of the workload (89 queries) that scans and joins DATE_DIM.

9 Conclusion
This paper characterizes an Online Analytical Processing (OLAP) benchmark, TPC-DS, when implemented
with a read-optimized, columnar Parquet format in the Hadoop ecosystem. We experimented with two
database engines: SPARK-SQL and Presto. Furthermore, we modeled performance gains from pushing a
few SQL building blocks to a computational storage device using Parquet, without any cooperation from
the database engine. We showed that these gains can be substantial, but are not universal. Queries with
high selectivity on the leaves of their plan with the largest tables benefit the most from such optimiza-
tion. Queries with low selectivity in their SCAN operations, even if they are scan-heavy, see more modest
performance gains per our modeling. Notice, however, that our models do not consider the cost to
decompress and decode data from a storage format to an internal database format. It is worth noticing
that scan-heavy operations may benefit significantly from performing decompression and decoding in
storage, even if they present little or no filter opportunities.

Our main contribution is estimating the expected speedup from pushing down a few SQL building blocks
(SCAN, FILTER, and PROJECT operations) to computational storage when using optimized, columnar
Parquet format files. We demonstrate that these operations are not only universal and simple to offload,
but that they may be implemented with little or no software changes for most database engines. First

Modeling Analytics for Computational Storage 27

Samsung SmartSSD prototypes are becoming available at the same time this report is being published.
As SmartSSD and other near storage computing technologies evolve, we will see new opportunities and
significant speedups for big data analytics and data mining.

Acknowledgments
We thank the anonymous reviewers for their comments and suggestions to improve our earlier draft.

References
[1] Samsung SmartSSD: https://samsungatfirst.com/smartssd/ Accessed August, 10,2019.
[2] NGD systems: https://www.ngdsystems.com/ Accessed August 10, 2019.
[3] ScaleFlux: http://www.scaleflux.com/ Accessed October 1, 2019.
[4] SIMMS https://www.simms.co.uk/tech-talk-2/sas-sata-or-pcie-know-your-interface/ Accessed
8/15/2019.
[5] G. Koo, et al. “Summarizer: Trading Communication with Computing Near Storage” MICRO’17, Oct 14-
18, 2017, Boston, MA, USA.
[6] I. Jo, et al. “YourSQL: A High-Performance Database System Leveraging In-Storage Computing” Pro-
ceedings of the VLDB Endowment, Vol. 9, No 12, pp. 924-935, August 2016.
[7] B. Gu, et al. “Biscuit: A Framework for Near-Data Processing of Big Data Workloads” ISCA, Seoul,
Korea, pp. 153-165, June 2016.
[8] J. Lee, et al. “ExtraV: Boosting Graph Processing Near Storage with a Coherent Accelerator”, Proceed-
ings of the VLDB Endowment, Vol. 10, No. 12, pp. 1706-1717, August 2017.
[9] J. Stuecheli, B. Blaner, C. Johns, M. Siegel. “CAPRI: A coherent accelerator processor interface”. IBM
Journal of Research and Development, 59(1):7:1{7:7, January 2015.
[10] K. Kohei, “GPCPU Accelerates PostgreSQL”, DB Tech Showcase, Tokyo, Japan, November 2014.
[11] “Postgres Derived Databases”, Documentation at https://wiki.postgresql.org/wiki/PostgreSQL_de-
rived_databases. Accessed 6/12/2018.
[12] P. Francisco “IBM PureData System for Analytics Architecture” IBM White Paper, 2014.
[13] TPC Benchmark DS Standard Specification Version 2.10.1. www.tpc.org/tpc_documents_current_
versions/pdf/tpc-ds_v2.10.1.pdf Accessed May 13, 2019.
[14] M. Poess, et al. “Analysis of TPC-DS the first standard benchmark for SQL-based big data systems”,
Proceedings of the 2017 Symposium on Cloud Computing, Santa Clara, CA, USA, pp. 573-585, September
2017.
[15] TPC-DS Top Results. www.tpc.org/tpcds/results/tpcds_advanced_sort.asp Accessed May 13, 2019.
[16] T. Ansley “Accelerating the Apache Hadoop 3.1-based Distribution Ecosystem with Flash Storage”
www.micron.com/about/blog/2018/july/accelerating-the-apache-hadoop-based-distribution-ecosys-
tem-with-flash-storage July 31, 2018.
[17] A. Thapliyal “Azure HDInsight Performance Benchmarking: Interactive Query, Spark and Presto”
azure.microsoft.com/en-us/blog/hdinsight-interactive-query-performance-benchmarks-and-integra-
tion-with-power-bi-direct-query/ December 20, 2017.
[18] Transaction Processing Performance Council website www.tpc.org

[19] Apache Spark Documentation 2.4.3. spark.apache.org/docs/latest/ Accessed 8/6/2019.
[20] Presto Hive Connector. prestodb.io/docs/current/connector/hive.html Accessed 6/1/2018.
[21] Presto Documentation. prestodb.io/docs/current/overview.html Accessed 4/5/2018.
[22] B. Braams, “Predicate Pushdown in Parquet and Apache Spark” Master’s Thesis. Univ. of Amster-
dam. December, 2018.
[23] S. Melnik, S. et al. “Dremel: interactive analysis of web-scale datasets”. Proceedings of the VLDB
Endowment 3.1-2 (2010), pages 330-339.
[24] S. Pei, J. Yang, Q. Yang “REGISTOR: A Platform for Unstructured Data Processing Inside SSD Storage”
SYSTOR, June 4-8, 2018, Haifa, Israel.
[25] Z. Ruan, T. He, J. Cong “INSIDER: Designing In-Storage Computing System for Emerging High-Per-
formance Drive” USENIX ATC 2019, Renton, WA, USA.

A version of this whitepaper also appeared in the ICPE 2020 Proceedings.

