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Abstract
Next generation flash storage will be armed with a substantial amount of computing power. In this 
paper, we investigate opportunities to utilize this computational capability to optimize Online Analytical 
Processing (OLAP) applications. We have directed our analysis at the performance of a subset of TPC-DS 
queries using Apache Hadoop clusters and two database engines, Apache SPARK-SQL and Presto1. We 
model the expected speed-up achieved by offloading a few operations that are executed first within 
most SQL plans. Offloading these operations requires minimal cooperation from the database engine, 
and no changes to the existing plan. We show that the speed-up achieved varies significantly among 
queries and between engines, and that the queries benefiting the most are I/O heavy with high selectivity 
of the “needle in the haystack” variety. Our main contribution is estimating the speed-up anticipated 
from pushing the execution of a few key SQL building blocks (scan, filter, and project operations) to 
computational storage when using read optimized, columnar Apache Parquet format files2.

CCS Concepts
•   Computing methodologies → Modeling and simulation → Model development and analysis → Model 
verification and validation;
•   Hardware → Communication hardware, interfaces and storage → External storage;
•   Information systems → Data management systems → Database management system engines → 
Database query processing → Query planning;
•   Information systems → Data management systems → Database management system engines → Online 
analytical processing engines;

1 Presto is a registered trademark of Facebook, Inc.
2 An earlier version of this report will appear in the Proceedings of ICPE 2020.
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1   Introduction
Current developments in “big data” storage solutions gear towards moving data processing closer to 
where the data resides, reducing unnecessary movement and speeding up data processing considerably.  
Computational storage is an emerging trend where a comparatively large amount of data processing 
occurs inside the storage layer. Examples of new devices exposing flash storage internal computing 
power include Samsung’s SmartSSD [1], NGD Systems [2], and ScaleFlux [3]. This new functionality signals 
performance improvement opportunities for I/O heavy workloads containing operations amenable to 
being completed near the storage source. One of the most critical types of database analytics – OLAP – 
well exemplifies this type of opportunity. It is typically very I/O intensive and contains quite a few building 
blocks that may be seamlessly moved to, or executed by, a computational storage device. 

Offloading is not a new concept. Network processors, GPUs and recently machine learning specialized 
processors are widely used to accelerate specific compute kernels while freeing CPU resources. We will 
show that the offloading of many more time-consuming operations from the host CPU to storage improves 
both workload performance and system efficiency. The immediate benefit, of course, is a sizeable decrease 
in I/O volume. This reduction in I/O leads to less host resource utilization, which not only improves 
performance of individual queries, but also increases server capacity. Besides database operations, other 
frequent operations that can be executed near the storage device include encryption and compression.

Database analytics workloads are especially read-intensive. It is not uncommon for I/O reads to take 90% 
or more of the total execution time. Offloading some of that to storage reduces I/O bandwidth along 
with other host resource usage, and may improve performance considerably. Furthermore, SSDs have an 
internal bandwidth that is much higher than that which is exposed to the host computer through existing 
channels (SAS, SATA, PCI-E, etc.) [4], which means that computational storage has a large amount of 
untapped potential to exploit.

This paper discusses the expected performance benefits of offloading some important basic database 
operations – namely Scan, Filter and Project – to computational storage. We evaluate the performance 
estimate model using TPC-DS workload and two database engines running on Hadoop clusters: SPARK-
SQL and Presto. 

This paper is organized as follows: after covering previous computational storage database offloading 
work, we explain the OLAP workload selection, and the configuration of our two clusters. In Section 
IV we dive into TPC-DS characteristics and examine the overall performance from running on the two 
Hadoop clusters, which have been the focus of our experimentation. In Section V, we explain our modeling 
methodologies, and in Section VI we describe and analyze results from that modeling. Specifically, we 
show how a substantial speed-up from computational storage optimization can depend on multiple 
factors. Finally, we briefly discuss other SQL building blocks amenable to computational storage 
pushdowns, and conclude.
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2   Previous Work
Most previous work on pushing SQL functions down to computational storage concentrate on specific 
functions of a specific Database Engine. Summarizer [5] modifies the existing NVMe command interface 
to implement four operations: initialize variables or set queries; read data and execute computation; read 
data and filter – the selection case; and the transfer of the output results to the host.  From their case 
studies, using 3 TPC-H queries and a very small scale factor (100MB – 0.1SF), we determined that they 
could do similarity joins as well. They compare different degrees of computation offloading for these three 
queries. The authors show that somewhat complex computations can be carried out near storage, and 
briefly discuss the data integration problem: how to combine data from different formats and sources. 
They concentrate on one specific integration problem: similarity join, and describe the heuristics they use. 
Left unanswered is the bigger issue on how to integrate truly distinct formats.

YourSQL [6] is based on MariaDB. YourSQL allows for complex query operations to be offloaded to a smart 
SSD in the form of an ISC task. That paper spends the bulk of its time talking about optimizer heuristics. 
One very interesting observation, from the authors’ performance analysis is that while your typical SQL 
application – OLTP or OLAP – cannot exhaust an NVMe bandwidth, its near-storage implementation can.

Biscuit [7] is what YourSQL uses to enable its computational storage operations. It provides the user 
application with C++ APIs. The user’s SSD-side C++ program with Biscuit APIs, called an SSDlet, is loaded 
in the device. A host-side program invokes and coordinates execution of the SSDlet tasks using libsisc; 
communication is done by linking input and output ports to specific tasks. Here they also claim that the 
APIs used to access files are nearly identical to standard libraries.

ExtraV [8] is IBM’s effort at computational storage for graph processing based on their CAPRI [9]. This 
paper describes an FPGA prototype that executes common graph traversal functions near the device. It 
works like virtual memory for graph applications, as it provides the host with the illusion that the entire 
graph lives in memory, while it is actually partly stored and compressed in an SSD. The authors have stated 
that graph processing is mostly done in memory, either in single servers or clusters, and that it cannot be 
done efficiently when graphs grow beyond the available memory.

PG-Strom [10] is an accelerator for PostgreSQL that offloads part of the SQL workload to a GPU. Supports 
Joins and Aggregates. However, by the time of that publication [10] all data fed to the GPU came from 
main memory (not storage).

Neteeza was the first successful product to use FPGAs as computational storage computing accelerators 
for analytics data engines.  It does not require any software installation or tuning. Just plug and play. 
Neteeza database engine is based on Postgres [11], and implements four functions in its FPGA engine: 
Compress, Project, Restrict and Visibility. Francisco [12] claims that Neteeza’s engine decompresses 
data at wire speed. Project and Restrict operations filter out columns and rows, respectively, based on 
the parameters in the SELECT and WHERE clauses of a query. The Neteeza Visibility engine is focused on 
database integrity, and therein, filters out rows that should not be seen by the query, such as any rows 
being inserted by a transaction that has not yet committed.
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Computational storage has also attracted interest beyond SQL and database applications. For example, 
REGISTOR [24] is an FPGA platform applying regex search, on-the-fly, to any file being transferred from an 
SSD to the host; INSIDER [25], also an FPGA-based drive controller, exposes a virtual file system with em-
bedded programmability, allowing programmers to push down operations customized to the application’s 
specific needs.

3   Workload and Setup
Here, we explain the TPC-DS benchmark, as well as the two cluster configurations used in the experi-
ments described. Moreover, we describe the two database engines (SPARK-SQL and Presto), and explain 
the rationale behind using the Parquet file format to offload SQL operations to computational storage.

3.1  TPC-DS
“The TPC Benchmark DS (TPC-DS) is a decision support benchmark that models several generally appli-
cable aspects of a decision support system” [13].

TPC-DS contains 24 tables, organized as a snowflake schema. It contains 6 very large FACT tables, and 
many small DIMENSION tables. Furthermore TPC-DS is comprised of 99 queries, each one representing 
a different business question. So, even though this is an artificial benchmark, it tries to mirror real-life 
applications. Schema is scalable, with the smallest being 1GB and the largest 100TB. The 1GB dataset is 
used for QA only. Performance is measured in Queries per Hour @ Scale Factor (QphDS@SF), and must 
include multiple tests (pertaining to power, throughput, and data maintenance). In this study, we con-
sider a subset of the power test. For a more detailed explanation of the TPC-DS benchmark, we refer the 
reader to [14].

TPC-DS has been around since 2007, but did not catch up until recently and after a major re-write, with 
the first published official report dated March 2018 (Cisco) [15]. As of January 2020, there are only six 
official reports published. Nonetheless, subsets of TPC-DS are heavily used informally by the industry to 
demonstrate up and coming trends [16][17]. TPC-DS is one of many Transaction Processing Performance 
Council (TPC) benchmarks [18], and as such covers enough general OLAP cases to be useful to practi-
tioners.

Because FACT tables are orders of magnitude larger than DIMENSION tables, we will gravitate towards 
queries that are “FACT table Scan heavy,” as opposed to queries that are “DIMENSION table Scan heavy.”
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3.2  Test Configuration
Two clusters are used in this paper, and since they are configured to run SPARK-SQL and Presto, we refer 
to them simply as the SPARK-SQL cluster and the Presto cluster. Each has eight data nodes with differ-
ent hardware. The detailed configuration is listed in Table I. Both engines use Apache Hive Metadata, 
and the Parquet file format.

SPARK-SQL is Apache Spark’s high-level tool for structured data processing [19]. It is an in-memory,
distributed, RDBMS that understands SQL and a Dataset API (available in Java and Scala). User
applications interface with SPARK-SQL via a command-line module, JDBC or ODBC. SPARK-SQL also 
supports reading and writing data stored in an existing Apache Hive installation.  

Presto is a distributed SQL query engine designed to query large data sets distributed over one or more 
heterogeneous data sources [20].  Presto provides a CLI interface, and query processing (parser, planner, 
scheduler), but will use data and metadata provided by other software components (Apache HBase, 
Apache Hive, MySQL, etc.). Presto interacts with these other components via connectors, and this is its 
claim to fame as it is possible to combine multiple, different data sources into one query seamlessly. 
There is no need for very expensive ETL (Export-Transform-Load) datasets in order to analyze them.
Similar to classic massively parallel processing (MPP) DBMS [21], Presto is a distributed system that runs 
on a cluster. Presto client submits SQL statements to a master daemon coordinator. Using metadata 

Table 1 - Cluster Configuration

Spark-SQL Presto

Intel (R) Xeon (R)
Gold 6152 CPU @

2.10GHz

Intel (R) Xeon (R)
CPU E5-2699 v4 @

2.20GHz
Data Node
Hardware

256GB 256GB to 1024GB

2x NVMe SSD 3.2TB 3x NVMe SSD 1.6TB

Linux Kernel 4.13.0 Linux Kernel 4.x.x

2.3.0 0.205

2.7.3 2.9.0

1.2.1000 1.2.2

1

10000Scale Factor
TPC-DS

Hive

SPARK-SQL/Presto

Local Storage

Memory

CPU

PaquetStorage Format

HDFS Replication

HadoopSoftware Stack

OS
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from connectors, the coordinator parses the query, generates the plan, and then schedules and coordi-
nates how it is executed by the workers. Workers get data from connectors, execute assigned tasks, and 
deliver results to the client. All processing happens in memory, and data is pipelined across the network 
between different stages.

Parquet is an open source columnar file format that was designed to be used with OLAP systems [22]. 
The Parquet file format is READ optimized, as inserts or updates can be expensive operations. It was 
inspired by the “Dremel” paper [23], and is extensively used in the Hadoop ecosystem. Furthermore, each 
Parquet disk file contains the table’s schema. This feature resolves the issue of the device being aware 
of the table metadata, a requirement for any computational storage processing. Furthermore, existing 
Parquet readers are capable of projecting and filtering certain data types using statistics provided in 
metadata. Implementing some functionality in a computational storage device is complementary and in 
addition to the existing pushdown capabilities of Parquet.
TPC-DS queries are downloaded from the TPC website and results were verified against sample output 
from the TPC. All queries run sequentially as a single test job. Before each query, the memory cache is 
cleared. In addition,
•   SPARK-SQL is restarted before every query
•   Presto is restarted before the job

4   TPC-DS Characterization
In this section, we discuss the many stages (or fragments) of the execution plan generated by the query 
optimizer. Next, we show SPARK-SQL and Presto query runtime results for TPC-DS. We list them side by 
side to show that they behave differently in order to illustrate and explain the different speed-ups that 
one might see for the same query executed with different engines. Next, we examine the concept of Scan 
Ratio, and how we use it to characterize and rank queries.

4.1   Typical TPC-DS query plan
SQL query plans are composed of basic building blocks.  They form an execution tree. Each building block 
typically focuses on one specific operation, and is scheduled by a SQL engine. How these building blocks 
are assembled dictates query performance. Main building blocks include: Scan, Filter, Project, Aggregate, 
Sort, Join, Merge, Union. Figure 1 (A) illustrates a typical query sequence, with building blocks being exe-
cuted from top to bottom. Figure 1 (B) is the building block sequence created by the SPARK-SQL planner 
for TPC-DS Query 44.
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The functionality of some building blocks includes:
•   Scan: Read database content from storage to compute
     host memory and apply any needed transformations
•   Filter: Filter table rows in memory with giving criteria
•   Project: Select table columns in memory
•   Join: Combine two tables based on given criteria

(A) Generic SQL query plan

Figure 1 - SQL query plans

(B) SPARK-SQL plan for Query 44
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4.2   Performance of all queries 
Figure 2 shows the runtime for all TPC-DS queries for SPARK-SQL and Presto. With 10TB dataset, SPARK-
SQL completes 91 and Presto completes 61 queries. Both database engines store all intermediate results 
in memory, and the queries that failed incurred an “out-of-memory” error. The query runtime has a wide 
range from less than a minute to many hours. We have not matched our cluster hardware configurations 
for SPARK-SQL and Presto, as it is not our goal to compare the performance between them. The point of 
this paper is to showcase a subset of the many different system parameters influencing the potentially 
substantial speed-up afforded by computational storage devices. We demonstrate that even though 
computational storage can provide impressive speed-ups, the benefits vary significantly depending on 
many other parameters such as table size, selectivity, query plan, etc.

In the following sections, we will select five queries from each cluster based on system characterization 
of the queries and potential offload benefits, and provide further analysis of each.

4.3   Scan Ratio
Scan Ratio is defined as the total CPU time spent on a database Scan operation, divided by total CPU 
time consumed by the query. The CPU time is reported by query planner from database engine. This time 
is not the wall clock time and should not be confused with query runtime.

For TPC-DS queries, the Scan Ratio ranges from near 0% to ~93% on SPARK-SQL and up to nearly 100% 
for Presto. In Figure 3, queries are sorted by their Scan Ratio, from left to right. Q9, with the highest Scan 

Figure 2 - TPC-DS runtime query comparison 

Query Runtime (sec.)
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Ratio, is furthest to the right. Notice that most CPU intensive queries have a small Scan Ratio, but not 
all. Some complex queries, such as Q44, are both compute and I/O intensive. 

High Scan Ratio does not necessary mean the query reads more data from storage, it only indicates that 
time spent on I/O is higher relative to other query operations. For example, Query 45 has a total disk 
read of ~1.3TB, its Scan Ratio is only 2.99%. But for Query 9, which has the highest Scan Ratio of ~93%, 
total disk read is only ~105GB. Although the total query runtime difference is not large (Q9, 212.36 sec, 
Q45, 176.02 sec.), the CPU cycles spent on non-I/O operations caused the Scan Ratio to be lower for Q45.  
A high Scan Ratio indicates that a query is a strong candidate for computational storage optimization, 
since its I/O operations are likely to be in its critical path, while a low Scan Ratio indicates that opera-
tions other than I/O are the bottleneck.

5   Offloading Model
Here, we explain how we selected each plan stage to be offloaded to computational storage, followed 
by a detailed description of the model methodology used with both database engines. Notice that the 
methods are somewhat different, which we chose to do in order to cover more aspects of the offloading 
process.
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5.1   Offloading components (or kernels) 
In this section, we exploit opportunities to offload operations from host to computational storage. In 
order to execute a query, data flows from the leaves of the plan to the root. Usually the leaves contain 
some form of SCAN operation: table rows and columns are read in (usually from disk, unless this data 
was previously cached). The SCAN operation usually includes some sort of data transformation, from 
the format on disk to the one understood by the database engine. Once a table is scanned (or sometimes 
while the table is being scanned), rows may be filtered or projected. Next plan steps may contain aggre-
gates, sorts, joins, window functions, or other advanced data transformations. Operations near the leaves 
will generally be “easier” to push down to computational storage. Basic SCANs, FILTERs, and PROJEC-
TIONs may happen with virtually no change to the database engine query plan. More aggressive push 
down optimizations are possible, but require the cooperation of the database engine, and re-factoring of 
the query plan.

For example, in Figure 1 (B), we observe this pattern in both FACT table and DIMENSION table I/O. By 
combining “Scan,” “Filter” and “Project” into a new building block, we can estimate the performance 
benefit of offloading this new building block (“Scan/Filter”) to computational storage. Regardless, with 
“Scan/Filter” offloading, the SPARK-SQL plan for Query 44 still looks the same.

Figure 3 - TPC-DS Scan Ratio and CPU utilization
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5.2   SPARK-SQL model methodology
The performance estimate model for SPARK-SQL is based on how the database engine plan is executed 
– in stages with dependencies. We assume there is no resource limitation on the number of stages that 
can be executed concurrently. 

For example, Figure 4 shows a generic query that involves 3 tables, 1 DIMENSION table and 2 FACT 
tables. Stage-0 reads the content of the DIMENSION table, while reading FACT tables happens in Stage-1 
and Stage-2. Then, Stage-3 and 4 sort the results from Stage-1 and 2. The results are subsequently 
passed to Stage-5 for the final Join operation.

First 3 stages (0, 1 and 2) include Scan/Filter/Project operations as marked with light dot shade in Figure 
4. The time spent on the operations are 1, 5 and 8 seconds respectively, and could be offloaded to
     computational storage. The offloaded execution time is calculated as:
•   Reserve 1 second for offloading-related handshaking. The reserved time is an arbitrary number. 
•   Assumes that the Filter runtime on the device is at wire speed and can be omitted. This is an opti-
mistic assumption that provides an upper bound for our analysis. The actual Filter runtime depends on 
compute/IO capabilities of the device, and can be further improved with pre-processing in the device.
•   Time-of-result data transfer between the device and the host as calculated based on the device Read 
bandwidth specification; in this paper, 3GB/sec has been used.

Figure 4 - Query Stage Scheduling
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With these assumptions, the example execution time can be reduced from 18 seconds to 12 seconds
(see Figure 5).

As the most fundamental step in building the estimate model, we need to know the time spent for Scan/
Filter/Project on each SPARK-SQL query stage. Fortunately, with SPARK-SQL the log file provides the 
following key logging information (Figure 6): 

	 •   MeasWClock         : The Stage wall clock runtime
	 •   ThrTime                  : Total execution time for the stage from all execution threads. This is not 
                       wall clock time
	 •   ThrTime         : The execution time break down for Scan, Filter, Project

With the above information, the estimated time spent on Scan/Filter/Project can be calculated as

		

 
In addition to Scan time, we also consider the following:
	 WClockTime           - The time to initialize computational storage for offloading. We always as-
sume one second for the estimation calculation.
	 WClockTime                   - The time required to transfer the results from the offloading device 
back to the host. It is calculated based the Read bandwidth of the computational device. In our model, 
the Filtered result is usually less than 0.5% of the results that are unfiltered. It would take only a frac-
tion of a second to read back to the host, therefore we ignored it this time.
	 With Parquet format, we assume that no Project operation or Project time is omitted. 
With the above assumption, the estimated stage runtime with offloading for SPARK-SQL is calculated as:

Figure 5 - SPARK-SQL Offload Model

EstWClockTime WClockTime EstWClockTime= +

MeasWClockTime
ThrTime

ThrTime
EstWClockTime =
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5.3   Presto Model methodology
To model push down benefits of Scan/Filter/Project operations, we create and populate smaller tables 
we call “model tables.” These “model tables” contain only the rows and columns that would be selected 
by a computational storage engine executing the Scan/Filter/Project operations defined by the query. 
We repeat the query using the model table, and compare results against the same query using the 
original tables – see Figure 7. For Presto, both original and model queries generate the same query plan. 
Similar to our SPARK-SQL model, the performance difference is the upper bound of the speed-up that a 
computational storage device would yield, because this model assumes that the storage device would 
be capable of filtering and projecting rows and columns at wire speed. However, if we take into consid-
eration the higher internal flash storage bandwidth [4], this is a realistic approximation of the expected 
speed-up.

Figure 6 - One SPARK-SQL Query Stage with Statistics
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Figure 7 - Presto Offload Model.

6   Offloading Evaluation
Here, we describe in detail the query selection process, and give a high-level view of the results obtained 
by the modeling of both database engines. Furthermore, we present side-by-side analysis of the expect-
ed speed-up for a few selected queries.
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6.1   The queries
In this study, we picked five queries from each configuration for deep analysis. The queries were selected 
based on where they fall on the different quadrants of the Scan Ratio versus a CPU utilization chart (see 
Figure 8) to cover a wider range of characteristics. Because we focus on offloading Scan/Filter/Project, 
we want queries that are I/O intensive and show high selectivity when filtering and projecting FACT 
tables. That is, we look for queries of the “needle in the haystack” variety. Three of the queries (Q9, Q44, 
and Q75) are found in both studies, while the other two are found exclusively in either SPARK-SQL or 
Presto. We chose this approach because, due to their different architecture and optimizer, interesting 
queries in one environment are not necessarily interesting, or possible, in the other. For example, Presto 
cannot execute Q4 (out-of-memory error).

Using the chart in Figure 8, we selected the following five SPARK-SQL queries for analysis: Queries 9 and 
44 have high Scan/Filter ratio; Query 4 has high CPU utilization; Query 72 has the longest runtime and 
higher CPU utilization; and Query 75 has a balanced Scan/Filter ratio and CPU utilization.

Based on our analysis of the query plans generated by Presto, we believe that Query 44, Query 49, and 
Query 76 are the natural candidates for near storage FILTER because they are the ones that filter out the 
largest portions of FACT tables. Furthermore, these are all SCAN heavy queries (Figure 8). Another two, 
Query 9 and Query 75, are on the “Top Ten” Presto list both in terms of Scan operations and complexity 
(number of fragments, or stages), and are queries that appear in the SPARK-SQL study. 

Figure 8 - SPARK-SQL Scan Ratio vs CPU utilization
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6.2   Characterization and performance summary – SPARK-SQL
Table 2 summarizes the characterization and offloading estimation for the SPARK-SQL queries identified 
above.  We did not find any cluster NVMe Read bandwidth bottleneck. The highest peak Read bandwidth 
is ~2GB/sec. for Query 75, which is less than 3GB/sec of the NVMe Read bandwidth specification.

For some queries, the CPU utilization can become the bottleneck at several stages. In the presence of a 
computational storage device, the CPU utilization should benefit from Scan/Filter offloading, but we did 
not explore this topic for SPARK-SQL, and in our model we assumed that CPU utilization is unchanged by 
Scan/Filter offloading.

The benefit of Scan/Filter offloading ranges from no speed-up to ~8.17x in query runtime. Scan Ratio, 
CPU utilization and SQL execution plan all contribute to this speed-up, and will be analyzed in detail in 
sub-section 6.4 below.

Table 2 - SPARK-SQL Computational Storage Model Results
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6.3   Characterization and performance summary – Presto
Figure 9 shows speed up for 10 queries we modeled, including the 5 selected queries we analyze in 
detail. Presto speed-up from computational storage modeling varies from no speed-up for queries that 
are not I/O bound, to an impressive 59.3x for Query 44.  Let’s look at how this happened. In Table 3, we 
list the primary characteristics and system metrics for each selected query. For Presto, CPU utilization is 
never above 80% busy for the queries tested. Most issues arise from less than optimal query plans, and 
the queries that failed ran out of DRAM memory. 

Figure 9 - Summary Presto Speed-up

Table 3 - PRESTO Computational Storage Model Results
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6.4   Characterization and performance details – SPARK-SQL
         and Presto
Now let’s examine the SQL plan, CPU, and I/O for the seven queries described in section 6.1 above.

Query 9 is the Highest Scan Ratio SPARK-SQL query, and one of the highest for Presto too (see Figure 8). 
Both SPARK-SQL and Presto follow the same query plan for Q9: They scan and filter the same FACT table 
15 times with differing filter values. An Aggregation operation follows each Scan/Filter, the results are 
used for final joining with a DIMENSION table. All 15 FACT table Scan/Filter stages start simultaneously 
and are followed by their Aggregation stage (see Figure 10). Within the Scan/Filter stage, the first half 
involves most I/O operations (Scan), and the second half mostly performs the Filter function. Although 
all 15 Scan/Filter stages start at the same time, because of SPARK-SQL executor limitations, not all work-
ers get scheduled immediately. Some stages have to wait for resources. This is reflected in the I/O chart 
(Figure 10).  The I/O bandwidth peaks at the beginning. As the stages start Filter operation, CPU get 
busier and I/O bandwidth decreases. As the stages complete and release resources to the next waiting 
stage, I/O bandwidth goes up and CPU utilization goes down. We see this I/O spike after four Scan/Filter 
stages complete.

Figure 11 illustrates the offloading performance estimate of computational storage with SPARK-SQL. 
Blue bars show the measured stage execution time and red bars show the estimated stage execution. 
Stage dependency is unchanged.

Figure 10: SPARK-SQL Query 9 CPU 
Utilization and Cluster Read Bandwidth

SPARK-SQL Stage Start/Stop Time
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In our study, we only model Scan, Filter and Projection, but Query 9 also stands to benefit from Aggre-
gate Pushdown, since the 15 scans result in 15 single, aggregated values. Because the Presto schema 
partitions table store_sales by ss_quantity, Query 9 does not significantly benefit from FILTER. The gains 
observed at the higher scale factor happen because of an artifact of the Presto model process. For Query 
9 with 10TB dataset, the total I/O ratio between the original query and the Presto model is comparatively 
small: 1.54x. This I/O savings is not enough to justify the 5.3x speed-up observed at 10TB (Table 3). Our 
hypothesis is that this was caused by the modeling, which generated five smaller tables – while the 
model reads from five different tables (each three sets of workers reads from one table), the original 
query reads 15 concurrent times from one table. To reinforce this point, notice that the I/O savings ratio 
of the second largest Presto speed-up -7.3x for Query 76 at 10TB, is 62.66x (see Table 3).

However, Query 44, is the one query displaying dramatic speed-ups from Presto modeling. This happens 
because we have a lot of filtering that is increasing at scale. Query 44, which scans FACT table store_
sales four times, is filtering rows where column ss_store_sk is equal to 2. With 1TB dataset, Query 44 
uses only 0.15% of store_sales rows, and with 10TB dataset, it uses only 0.13% of store_sales rows. For 
both SPARK-SQL and Presto, Query 44 is a High Scan Ratio query with a CPU-intensive query operation. 
Notice that Presto and SPARK-SQL plans for Query 44 are different (Figure 12). The SPARK-SQL plan 
is smart enough to see a repeat subquery, execute it only once, and to broadcast the small dimension 
table. Presto plan is not scalable, and benefits immensely from the I/O savings afforded by the computa-
tional storage speed-up.

Figure 11: Query 9 SPARK-SQL Stage Breakdown with estimation
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Figure 12: Query 44 plan compare

Figure 13: SPARK-SQL Query 
44 CPU Utilization and Cluster 
Read Bandwidth

SPARK-SQL Stage Start/Stop Time
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For SPARK-SQL, Query 44 has other CPU intensive operations, such as Sort and Join, and its average 
cluster CPU utilization is at ~54%, but because of SPARK-SQL’s worker scheduling, not all Data Nodes are 
utilized. See, for example, in Figure 13, the 3rd fact table Scan/Filter in Stage 5 only uses up to four Data 
Nodes. Data Node D9 is idling while D10 is nearly saturated. We do not explore the offloading impact on 
CPU cycles for SPARK-SQL, but moving Filter operation to computational storage should relieve Data 
Node CPU utilization and further improve performance. SPARK-SQL speedup for Q44 is 3.61x (Figure 14).

For Presto, Query 49’s model response time is 6.1x faster than the original query, our third best result. 
Response time went from 12+ minutes to 2+ minutes (see Table 3). Query 49 reads in 4.5 times more 
bytes than its model, and this savings impacts both response times and CPU utilization, which becomes 
more efficient with the model: average CPU busy % went from 24 with the original query to 41 with the 
model.

SPARK-SQL Query 75 is a balanced query with all six FACT tables being used plus two DIMENSION tables. 
All FACT table Scan/Filter processing can benefit from computational storage offloading, but some stag-
es are CPU bottlenecked (see Figure 15), and the SPARK-SQL speed-up for this query is 2.07x (Figure 16). 
Similarly, Presto Query 75 scans all six FACT tables, but there is no filter opportunity, just projection. Still, 
even though there is no speed-up for Presto, at 1TB we see excellent speed-up at 10TB: query response 
time went from 26 minutes to 13+ minutes. This result shows that the Parquet reader used by Presto may 
not be adequately implementing projection, while the Spark Parquet reader is doing so.
For Presto, Query 75 behavior is similar to Query 9. Both queries display no speed-up with the 1TB 

Figure 14: Query 44 SPARK-SQL Stage breakdown with estimate



Modeling Analytics for Computational Storage 23

dataset, but modest gains with the 10TB dataset. Query 75 shows less speed-up than Query 9 at 10TB. 
From Figure 17, we see another interesting pattern: both the original and model show a barrier around 
three minutes before query completion, when all CPU and I/O utilization for all servers is near zero. This 
moment is identified by a vertical green bar in Figure 17. The elapsed time gain from the model happens 
before that barrier ― the original query runs for about 23 minutes while the model runs for about 10 
minutes. From Figure 17, we see that the model is handling less I/O both before and after the barrier, but 
no elapsed time gain is observed after the barrier. Query 75 total I/O ratio between the original and the 
model is only 1.5x.

Query 4 is SPARK-SQL’s most CPU-intensive query. It uses three FACT tables and one DIMENSION table 
with many Sort, Join and other operations. These operations saturate cluster compute resources and the 
CPU becomes the bottleneck (see Figure 18). Presto cannot execute Query 4 with the 10TB dataset – it 
gets an “out of memory” error. Because most query runtime is spent on CPU-intensive, non-I/O opera-
tions, the Scan/Filter offloading benefit is limited to 9% as shown in Figure 19.

Figure 15: SPARK-SQL Query 
75 CPU Utilization Cluster 
Read Bandwidth

SPARK-SQL Stage Start/Stop Time
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Figure 16: Query 75 SPARK-SQL Offloading estimate

Figure 17: Query 75 Presto CPU and I/O activity
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Figure 18: SPARK-SQL Query 
4 CPU Utilization and Cluster 
Read Bandwidth

Figure 19: Query 4 SPARK-SQL 
Stage breakdown and estimate

SPARK-SQL Stage Start/Stop Time
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Presto Query 76 filters and scans the three largest FACT tables (store_sales, web_sales, and catalog_
sales). Furthermore, the selectivity is significant: only 4.50% of table store sales, 0.03% of web_sales, 
and 0.50% of catalog_sales are used after the filter operation. Consequently, we see excellent speed-
ups for Presto at both scale factors. At 10TB, query response time went from 5+ minutes to 43 seconds, 
with the total I/O ratio between the original and the model an impressive 62.66x (see Table 3).
Query 72 has the longest runtime of all TPC-DS queries. It has 10 Join operations, and they are scheduled 
almost sequentially by SPARK-SQL within a single stage. Compared to the total runtime, the time spent 
on I/O counts only a small fraction. Because offloading is applied only on I/O, for this query, we observed 
no performance gain when offloading Scan/Filter.
Overall, for the computational storage operations being considered, everything is impacted by the 
selectivity of each filter and projection operation yield. And those yields can be substantial. For example, 
Query 44 reads 530 times more bytes than its model. 

8   Thoughts on offloading other components
SCAN, FILTER, and PROJECTION are SQL operations that can be easily pushed down to computational 
storage. They are the proverbial “low hanging fruit.” There are other operations that also wisely might be 
pushed down to computational storage, though some require cooperation from the database engine. For 
example, some aggregates, such as SUM, COUNT, MIN, MAX, are amenable to being pushed down even 
in a distributed environment. Other aggregates, such as AVERAGE and MEAN, can be partially pushed 
down, and would require active participation of the database engine. Furthermore, some JOINs, such as 
broadcast-join, can be pushed down. In the case of TPC-DS, for example, if dimension table DATE_DIM 
was replicated for all storage devices and its JOIN operations to fact tables were pushed down, this could 
potentially benefit 90% of the workload (89 queries) that scans and joins DATE_DIM.

9   Conclusion
This paper characterizes an Online Analytical Processing (OLAP) benchmark, TPC-DS, when implemented 
with a read-optimized, columnar Parquet format in the Hadoop ecosystem. We experimented with two 
database engines: SPARK-SQL and Presto. Furthermore, we modeled performance gains from pushing a 
few SQL building blocks to a computational storage device using Parquet, without any cooperation from 
the database engine. We showed that these gains can be substantial, but are not universal. Queries with 
high selectivity on the leaves of their plan with the largest tables benefit the most from such optimiza-
tion. Queries with low selectivity in their SCAN operations, even if they are scan-heavy, see more modest 
performance gains per our modeling. Notice, however, that our models do not consider the cost to 
decompress and decode data from a storage format to an internal database format. It is worth noticing 
that scan-heavy operations may benefit significantly from performing decompression and decoding in 
storage, even if they present little or no filter opportunities.

Our main contribution is estimating the expected speedup from pushing down a few SQL building blocks 
(SCAN, FILTER, and PROJECT operations) to computational storage when using optimized, columnar 
Parquet format files. We demonstrate that these operations are not only universal and simple to offload, 
but that they may be implemented with little or no software changes for most database engines. First 
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Samsung SmartSSD prototypes are becoming available at the same time this report is being published. 
As SmartSSD and other near storage computing technologies evolve, we will see new opportunities and 
significant speedups for big data analytics and data mining.
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