
1

Getting Started
with Flexible Data
Placement (FDP)
Global Open-ecoSystem Team (GOST)

Authors:
Arun George, Vikash Kumar, Roshan Nair, Vivek Shah, Klaus Jensen,
Ankit Kumar, Kanchan Joshi, Kundan Kumar, Nitesh Shetty

2

Introduction to FDP .. 3

Software Prerequisites for FDP ... 5

2.1	 Install nvme-cli and libnvme

2.2	 Install liburing

FDP Drive Initialization ... 6

Getting to know your FDP device ... 7

4.1	 FDP Device Information

	 	 4.1.1	 FDP Device Configuration

		 4.1.2	 FDP Device Stats

		 4.1.3	 FDP Device Status

4.2	 FDP Events

		 4.2.1	 FDP Event Types

		 4.2.2	 Querying FDP Events Generated by NVMe device

Linux SW stack support overview .. 10

NVMe-CLI .. 11

	FIO – Flexible I/O Tool .. 12

Linux Kernel I/O Passthru support .. 14

Linux Kernel File System/Block IO support .. 14

9.1	 Application-driven placement

9.2	 Filesystem-driven placement

SPDK – Storage Performance Development Kit ... 19

xNVMe – Cross-platform NVMe ... 22

Application Enablement – CacheLib ... 24

12.1	 Purpose of FDP support in CacheLib

12.2	 Setting up CacheLib code and FDP device for testing

		 12.2.1	 Prerequisites

		 12.2.2	 Build

		 12.2.3	 Set up a device with FDP enabled

		 12.2.4	 Run CacheBench to test FDP-enabled CacheLib

	12.3	 Results

QEMU Emulation Support .. 28

1

2

3

4

5

6

7

8

9

10

11

12

13

Table of Contents

3

NVM Express® (NVMe®) released the ratified technical proposal TP4146a Flexible Data Placement (FDP) that
defines a new method for placing logical blocks into the non-volatile storage in an effort to reduce Write
Amplification Factor (WAF) by the SSD. This provides a new data placement mechanism that allows the host to
control which logical blocks are written into a set of NAND blocks managed by the SSD called a Reclaim Unit.
Moreover, the host is able to write to more than one Reclaim Unit at a time, allowing the host to isolate the data
written to a Reclaim Unit per-application or even within an application to separate data written that has different
life cycles (referred to as hot and cold data).

The concepts of FDP are explained in the published whitepaper, “Introduction to Flexible Data Placement: A New
Era of Optimized Data Management”. It explains the device internals of the FDP technology, and also compares
FDP with previous data placement technologies such as Zoned Name Space (ZNS) and Streams.

The key ideas of FDP technology can be summarized as follows:

1. Introduction to FDP

Data Segregation: The host system can separate user data of different longevity patterns into different
NAND blocks of the SSD device. This feature is similar to NVMe-Streams in concept, but comes with fewer
restrictions such as not being namespace-specific. FDP further extends the ‘Data Segregation’ feature in
such a way that the host is able to separate the data into different NAND dies.

Data Alignment: The host is able to know the SSD superblock boundaries and align the user data accordingly.
This feature is useful when the host wants to align different objects of similar longevity type into different
NAND media for eventual efficient de-allocation.

Device Feedback: Log messages defined in the FDP spec allow the Host to know details about the data
placement in the Device. For example, the Host will be able to determine the frequency of garbage collection
(GC) occurrences, Super Block re-assignments, etc.

1.

2.

3.

The following diagrams from the whitepaper summarize the FDP proposal and compare an FDP-enabled SSD
architecture to a conventional SSD one, illustrating how FDP helps the host to achieve a reduction in device Write
Amplification Factor.

https://download.semiconductor.samsung.com/resources/white-paper/FDP_Whitepaper_102423_Final.pdf

4

Figure 1: Logical view of a Typical Conventional NVMe SSD using Superblocks

Figure 2: Logical view of an FDP NVMe SSD using Superblocks

5

The FDP architecture as shown in the above figure has the following components.

	Reclaim Unit (RU): A set of NAND blocks to which a host may write logical blocks. This is similar to the
SuperBlock concept in the Flash Translation Layer (FTL) of SSD. The typical size is a few GBs (e.g. 6GB).

Reclaim Group (RG): A collection of Reclaim Units. This concept is typically used when the device allows the
host to segregate data in different NAND dies based on a host policy.

Reclaim Unit Handle (RUH): A resource within the SSD to manage and buffer the logical blocks to write to a
Reclaim Unit (i.e., a host write resource). A namespace is allowed access to one or more RUHs. If a namespace
has access to more than one RUH, the host is allowed to write to multiple RUs at the same time. Many FDP
devices have the number of RUHs as 8, 16, 256 etc.

Placement Handle: An index into the list of Reclaim Unit Handles, accessible by namespace, that is defined
at namespace creation. Host writes to that namespace can only access the RUHs in that list.

Endurance Group: A collection of NAND blocks for which endurance is managed as a single unit, with the
intention that those NAND blocks wear out at the same time (i.e., SSD life). In a typical SSD, there exists a
single Endurance Group.

The key takeaways are that Data Separation is achieved by means of Reclaim Unit Handle (RUH) and Reclaim Group
(corresponding to die), and data alignment to superblocks is achieved by means of the Reclaim Unit concept.

A host may employ data separation using RUHs when the workloads have distinct IO patterns with different lifetimes. For
example, when the host has hot/warm/cold data streams, RUHs may be used to separate them in the SSD. Data alignment on
RU boundaries is typically useful when the host has a set of BLOBs or data objects that it wants to allocate in separate physical
media because a particular object may have a different lifetime than the other ones.

2. Software Prerequisites for FDP

2.1 Install nvme-cli and libnvme

The NVMe-CLI tool is required to configure the FDP drive with the necessary settings. Install nvme-cli and the
associated libnvme as a preliminary step.

#nvme-cli and libnvme
git clone https://github.com/linux-nvme/nvme-cli.git
cd nvme-cli
meson setup --force-fallback-for=libnvme .build
meson compile -C .build
meson install -C .build

#verify the installed version

nvme –version

If the meson version does not support “--force-fallback-for” argument, it will be necessary to install libnvme separately.

6

2.1 Install liburing

Many of the tools and ecosystems use the liburing library to send the FDP-enabled IOs to the Linux kernel. Install it
from the repo https://github.com/axboe/liburing.git.

#Delete any pre-existing namespaces
nvme delete-ns /dev/nvme0 -n 1

#Disable FDP
nvme set-feature /dev/nvme0 -f 0x1D -c 0 -s
nvme get-feature /dev/nvme0 -f 0x1D -H

#enable FDP
nvme set-feature /dev/nvme0 -f 0x1D -c 1 -s
nvme get-feature /dev/nvme0 -f 0x1D -H

Get capacity of drive and use it for further calculations
nvme id-ctrl /dev/nvme0 | grep nvmcap | sed “s/,//g” | awk ‘{print $3/4096}’

Create namespace. use the capacity values from the above command in --nsze etc
nvme create-ns /dev/nvme0 -b 4096 --nsze=459076086 --ncap=459076086 -p 0,1,2,3 -n 4

#Attach namespace. Ex: NS id = 1, controller id = 0x7
nvme attach-ns /dev/nvme0 --namespace-id=1 --controllers=0x7

Deallocate
nvme dsm /dev/nvme0n1 -n 1 -b 459076086

sudo apt remove liburing2
sudo apt remove liburing-dev

#liburing
git clone https://github.com/axboe/liburing.git
cd liburing
./configure --cc=gcc --cxx=g++
make -j$(nproc)
sudo make install

Note: There are reports of build issues due to different versions of liburing being present in the system. Removing the existing
liburing versions

and installing from the source should fix this issue. One such issue is discussed at
https://github.com/facebook/CacheLib/issues/302.

3. 	FDP Drive Initialization
FDP has to be explicitly enabled in the device and can only be done when no namespaces exist.

The NVMe-CLI tool (‘nvme’) is used for configuring NVMe FDP drive. The following example depicts the configuration
of a 2TB FDP drive.

2TB FDP Device Setup

7

4. Getting to know your FDP device

4.1 FDP Device Information

4.1.1 FDP Device Configuration

$ nvme fdp configs

/dev/nvme0 -e 1

Command

FDP Attributes: 0x80

Vendor Specific Size: 144

Number of Reclaim Groups: 1

Number of Reclaim Unit Handles: 8

Number of Namespaces Supported: 2

Reclaim Unit Nominal Size: 6436159488

Estimated Reclaim Unit Time Limit: 0

Reclaim Unit Handle List: (Initially Isolated/Persistently

Isolated)

 [0]: Initially Isolated

 [1]: Initially Isolated

 [2]: Initially Isolated

 [3]: Initially Isolated

 [4]: Initially Isolated

 [5]: Initially Isolated

 [6]: Initially Isolated

 [7]: Initially Isolated

Output

Initially Isolated: The user data from a write command that utilizes this type of Reclaim Unit Handle is originally isolated in
the referenced RU from other user data in write commands that utilize a different RU Handle in the same Reclaim Group. If
the controller moves the user data due to vendor specific operations (i.e., garbage collection), then it may do so to an RU in the
same Reclaim Group that contains other user data moved by the controller that was written by the host utilizing any RU Handle
of the same type.

Persistently Isolated: The user data from a write command using this type of Reclaim Unit Handle is initially kept separate in
its referenced RU from other data written using a different RU Handle. If the controller needs to move this data (like during
garbage collection), it must relocate it to an RU within the same Reclaim Group, only containing data written by the host using
the same RU Handle.

Reclaim Unit Nominal Size: This field indicates the nominal size, in bytes, of each Reclaim Unit of non-volatile storage within
each Reclaim Group.

FDP Attributes: Refer to the NVMe FDP spec (TP4146) for details of this field. The MSB (Bit 7) Indicates whether FDP
configuration is valid or not. FDP is enabled in the given example output.

8

4.1.2 FDP Device Stats

4.1.3 FDP Device Status

$ nvme fdp stats

/dev/nvme0 -e 1

Command

Host Bytes with Metadata Written (HBMW):

277,943,428,800,512

Media Bytes with Metadata Written (MBMW):

610,715,721,687,040

Media Bytes Erased (MBE):

610,752,503,218,176

Output

Host Bytes with Metadata Written (HBMW): Contains the total number of bytes of user data the host has written to the
specified Endurance Group as part of processing I/O commands as defined in the appropriate I/O Command Set specification.

Media Bytes with Metadata Written (MBMW): Contains the total number of bytes of user data that have been written to the
specified Endurance Group including both host and controller writes (e.g., garbage collection and background media scan
operations) as part of processing as defined in the appropriate I/O Command Set specification.

Media Bytes Erased (MBE): Contains the total number of bytes of data that have been erased in the specified Endurance Group.

FDP Attributes: Refer to the NVMe FDP spec (TP4146) for details of this field. The MSB (Bit 7) Indicates whether FDP
configuration is valid or not. FDP is enabled in the given example output.

$ nvme fdp status

/dev/nvme0 --namespace-id=1

Command

Placement Identifier 0; Reclaim Unit Handle Identifier 0

 Estimated Active Reclaim Unit Time Remaining (EARUTR): 0

 Reclaim Unit Available Media Writes (RUAMW): 452484

Placement Identifier 1; Reclaim Unit Handle Identifier 1

 Estimated Active Reclaim Unit Time Remaining (EARUTR): 0

 Reclaim Unit Available Media Writes (RUAMW): 1571328

Placement Identifier 2; Reclaim Unit Handle Identifier 2

 Estimated Active Reclaim Unit Time Remaining (EARUTR): 0

 Reclaim Unit Available Media Writes (RUAMW): 1571328

Placement Identifier 3; Reclaim Unit Handle Identifier 3

 Estimated Active Reclaim Unit Time Remaining (EARUTR): 0

 Reclaim Unit Available Media Writes (RUAMW): 1571328

Output

Placement Identifier (PID): This field indicates the Placement Identifier containing the Placement Handle and Reclaim Group
Identifier for this Reclaim Unit Handle Status Descriptor.

9

Reclaim Unit Handle Identifier: This field indicates the Reclaim Unit Handle for the Placement Identifier field.

Reclaim Unit Available Media Writes (RUAMW): This field indicates the number of logical blocks currently able to be written
to the media associated with the Reclaim Unit referenced by the Placement Identifier field.

4.2 FDP Events

FDP Events inform the host about the activities happening on the device. These events are a means to help the host know
when its data placement scheme is not functioning as expected.

4.2.1 FDP Event Types

4.2.2 Querying FDP Events Generated by NVMe device

FDP Event Logs are generated by the NVMe device and they need to be polled by the host system.

RU Not Written to

Capacity (0h)

RU Time Limit

Exceeded (1h)

Media Reallocated

(80h)

Implicitly modified

RUH (81h)

Controller Reset

Modified RUH’s (2h)

FDP Event Type

The Reclaim Unit Handle reported that it was forced to reference a different
RU due to an I/O Management Send command issued by the host prior to the
previously referenced RU being written to capacity.

The capacity of a Reclaim Unit was not completely written within the time
defined in the “Estimated Reclaim Unit Time Limit” field due to the controller
modifying the Reclaim Unit Handle to reference a different Reclaim Unit.

User data contained in a Reclaim Unit was written by the host specifying an
RU Handle with a type of Initially Isolated, and was moved by the controller to
a different Reclaim Unit (e.g. during garbage collection).

The controller modified a Reclaim Unit Handle to reference a different RU where
that modification was not due to any host action (e.g. a write command that has
a size greater than the remaining capacity of the RU being written to).

A write command specified an invalid Placement Identifier due to an invalid
Placement Handle or an invalid Reclaim Group Identifier.

Event Description

$ nvme fdp events /dev/nvme0 --endgrp-id=1
Event[0]
 Event Type: 0x80 (Media Reallocated)
 Event Timestamp: 1707300380230 (Wed 07 Feb 2024 15:36:20 IST IST)
 Number of LBAs Moved (NLBAM): 65535
Event[1]
 Event Type: 0x80 (Media Reallocated)
 Event Timestamp: 1707300381105 (Wed 07 Feb 2024 15:36:21 IST IST)
 Number of LBAs Moved (NLBAM): 65535

10

5. Linux SW stack support overview
The following diagram gives an overview of the Linux software stack support for FDP. Each of the modules will
be explained in detail in the sections that follow.

Figure 3: FDP support in Linux Software Stack

11

6. NVMe-CLI

NVMe-CLI is a command-line tool used for managing NVMe drives on Linux platform. It allows users to interact
with and configure NVMe storage devices through a terminal interface. With NVMe-CLI, users can query device
information, manage namespaces, update firmware, and more. It supports FDP feature specification from version 2.3.

These are the supported FDP commands in NVMe-CLI.

#nvme fdp configs /
dev/nvme0 --end-
grp-id=1

configs

#nvme fdp usage /dev/
nvme0 endgrp-id=1

usage

#nvme fdp events /
dev/nvme0 endgrp-id=1

#nvme fdp update /
dev/nvme0 --name-
space-id=1 --place-
ment-handle=0,1,2,3

#nvme fdp version

events

update

version

#nvme fdp status /
dev/nvme0 --name-
space-id=1

#nvme fdp set-event
/dev/nvme0 -n 1 -p
<placement handle> -e
<enable/disable> -t
<event type>

status

set-events

#nvme fdp stats /dev/
nvme0 endgrp-id=1

stats

FDP Event Type FDP Command

The FDP Configurations log page identifies a list of static FDP
configurations that are allowed to be applied to the specified
Endurance Group.

The Reclaim Unit Handle Usage log page provides information
about the Reclaim Unit Handles associated with the Placement
Handles of the namespaces in the specified Endurance Group.

The FDP Events log page provides information about events
affecting Reclaim Units and media usage in an Endurance Group
that has FDP enabled.

The Reclaim Unit Handle Update management operation
generates the I/O Management Send command to update the
reclaim unit handles.

The Version command shows FDP and libnvme versions.

The Reclaim Unit Handle Status management operation provides
information about Reclaim Unit Handles that are accessible by the
specified namespace.

The Set Events command is used to enable or disable
FDP events.

The FDP Statistics log page provides information about the
FDP configuration over the life of the FDP configuration in an
Endurance Group.

Event Description

12

6.1 Obtaining Device WAF using NVMe-CLI

NVMe-CLI can be used to obtain the device Write Amplification Factor (WAF) when FDP is enabled. WAF can be obtained by
dividing the amount of data written to flash media (MBMW) to the amount of data written by the host (HBMW).

Note: This will only work with FDP enabled mode in the devices. And the above command gives the amount of writes
accumulated during life time of the device. The user need to baseline the numbers by collecting it before and after the
experimentation.

$ nvme fdp stats /dev/nvme0

-e 1

$ nvme fdp stats /dev/nvme0

-e 1 | awk ‘/(HBMW)/ {hbmw

= $7} /(MBMW)/ {mbmw = $7}

END {print “Device WAF = “

mbmw/hbmw}’

Command

Host Bytes with Metadata Written (HBMW): 277,943,428,800,512

Media Bytes with Metadata Written (MBMW): 610,715,721,687,040

Media Bytes Erased (MBE): 610,752,503,218,176

Device WAF = 2.19

Output

7. FIO – Flexible I/O Tool
FIO is a flexible I/O tool essentially used for performance measurement. It can spawn a number of threads or
processes, each doing a particular type of I/O action as specified by the user.

FDP support has been available in fio from 3.34 (Mar 2023) from this commit. It is recommended to use the latest
master branch to take advantage of all available features.

The user can enable the FDP feature in fio with the new “fdp=1” parameter for fio’s io_uring_cmd ioengine. By
default, the fio jobs will cycle through all the available placement identifiers for write commands to that namespace.
The user can limit the placement identifiers that can be used with an additional parameter, “fdp_pli=<list,>”, which
can be useful for separating write-intensive jobs from less write-intensive ones. Setting up the namespace for FDP
is outside the scope of ‘fio’, so the description below assumes the namespace is already properly configured for the
mode.

The current FDP support in FIO provides a sample fdp job that is more like a ‘hello world’ app for developers and
users. It allows the FDP device users to clarify the WAF hypothesis and test performances in FDP and non-FDP cases.

fio/examples/uring-cmd-fdp.fio

13

io_uring_cmd I/O engine for nvme-ns generic character device with FDP enabled
This assumes the namespace is already configured with FDP support and has at
least 8 available reclaim units.
#
Each job targets different ranges of LBAs with different placement
identifiers, and has different write intensity.

[global]
filename=/dev/ng0n1
ioengine=io_uring_cmd
cmd_type=nvme
iodepth=32
bs=4K
fdp=1
time_based=1
runtime=1000

[write-heavy]
rw=randrw
rwmixwrite=90
fdp_pli=0,1,2,3
offset=0%
size=30%

[write-mid]
rw=randrw
rwmixwrite=30
fdp_pli=4,5
offset=30%
size=30%

[write-light]
rw=randrw
rwmixwrite=10
fdp_pli=6
offset=60%
size=30%

FDP specific options

	Activate: --fdp=1
•	 Read available Placement Identifiers (PID) from device.

Select PIDs: --fdp_pli=[OFFSET_LIST]
•	 Specify the offset of placement identifiers to be used from the available placement identifier.
•	 If not specified, fio will use all available placement identifiers.

Selection method: --fdp_pli_select=[TYPE] -random -roundrobin (default)
•	 random: select random placement identifiers for each write operation from the available ones

(passed via option --fdp_pli)
•	 roundrobin: roundrobin across all available placement identifiers for each write operation

(passed via option --fdp_pli)

1.

2.

3.

14

Examples

To test with io_uring_cmd i.e. bypassing block layer, use this example configuration
•	 https://github.com/axboe/fio/blob/master/examples/uring-cmd-fdp.fio

To test with xnvme ioengine, use this example configuration
•	 https://github.com/axboe/fio/blob/master/examples/xnvme-fdp.fio

8. Linux Kernel support - I/O Passthru
Kernel support for FDP is provided through the I/O passthru mechanism.
(Note: This may change, as FDP patches for Linux block layer are being discussed in the Linux kernel community.)

I/O passthru is a mechanism through which user space applications can access the NVMe device directly without
going through file system or block layer APIs. This mechanism is often used by experimental features in NVMe until
they are proven and merged into the kernel.

I/O passthru is upstream since kernel v5.13. More information is available in this paper:
https://www.usenix.org/conference/fast24/presentation/joshi

Sample application code that uses I/O passthru can be found here:
https://github.com/axboe/liburing/blob/master/test/io_uring_passthrough.c

Also, a real deployment example of I/O passthru with FDP directives can be found at CacheLib code here:
https://github.com/facebook/CacheLib/blob/main/cachelib/navy/common/FdpNvme.cpp#L132.

9. Linux Kernel File System/Block IO support
This section outlines using Linux FS/Block IO over the NVMe-FDP device that is separate from using the I/O passthru
mechanism – that is, how Linux application(s) sitting atop the filesystem can use the data-placement capabilities
offered by FDP.

Within this approach, there are two ways for a filesystem to leverage the FDP hints:

Application-driven placement. The application can assign different hints to file data based on an
understanding of the expected lifetime. This approach does not require the filesystem to make any
decision on the file data.

Filesystem-driven placement. The filesystem can implement a fully automated policy of segregating data
and metadata. F2FS presents one such example as it provides a ‘fs-based’ mount option.

15

9.1 Application-driven placement

Linux 6.9 kernel re-enables the write-hint infrastructure that allows application to set/query data lifetime hints on the file.

Reference: https://elixir.bootlin.com/linux/v6.9-rc1/source/include/linux/rw_hint.h#L9

The Linux SCSI driver can pass lifetime information to an underlying device. However, the upstream NVMe driver does not
have similar functionality. Samsung has prepared a custom kernel in which the NVMe driver maps write-hint values to the
FDP placement identifiers.

Source: https://github.com/SamsungDS/linux/tree/feat/fdp_fs

This enables an application to leverage FDP using the write-hint interface.

Guiding the data-placement using the write-hint interface
Users can set/get write-hint to a file using the fcntl() interface.

•	 F_GET_RW_HINT: allows getting the hint from the file’s inode
•	 F_SET_RW_HINT: allows setting the hint to the file’s inode

List of available write hints:

The write-hints are passed down for both buffered and unbuffered (direct) I/O.

The NVMe driver converts the write-hint to the device-specific placement-identifier, and sends that to the
device in the write command.

RWH_WRITE_LIFE_NOT_SET

RWH_WRITE_LIFE_NONE

RWH_WRITE_LIFE_SHORT

RWH_WRITE_LIFE_MEDIUM

RWH_WRITE_LIFE_LONG

RWH_WRITE_LIFE_EXTREME

FDP Event Type

Not to set the write life

No hints about write lifetime

Data written has a short lifetime

Data written has a medium lifetime

Data written has a long lifetime

Data written has an extremely long lifetime

Event Description

https://github.com/SamsungDS/linux/tree/feat/fdp_fs

16

Examples
Fio on XFS volume

Custom C program (showing the fcntl interface)

fio only supports 5 values:

 none
 No particular life time associated with this file.

 short
 Data written to this file has a short life time.

 medium
 Data written to this file has a medium life time.

 long
 Data written to this file has a long life time.

 extreme
 Data written to this file has a very long life time.

These are sent using the “--write_hint” option.

mkfs.xfs /dev/nvme0n1
mount /dev/nvme0n1 /mnt
fio --filename=/mnt/f1 --bs=4k --ioengine=io_uring --group_reporting=1 --unlink=0 --size=1M
--direct=1 --name=f1 --rw=randwrite --write_hint=extreme
fio --filename=/mnt/f2 --bs=4k --ioengine=io_uring --group_reporting=1 --unlink=0 --size=1M
--direct=1 --name=f1 --rw=randwrite --write_hint=short

/*
 * writehint.c: check or set a file/inode write hint
 */
#define _GNU_SOURCE
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <inttypes.h>
#include <string.h>

#include <sys/types.h>
#include <sys/stat.h>

#define BUF_SIZE 4096

17

static char *str[] = { “WRITE_LIFE_NOT_SET”, “WRITE_LIFE_NONE”,
 “WRITE_LIFE_SHORT”, “WRITE_LIFE_MEDIUM”,
 “WRITE_LIFE_LONG”, “WRITE_LIFE_EXTREME” };

int main(int argc, char *argv[])
{
 uint64_t hint;
 int fd, ret;
 int i = 0;
 char * buf;
 struct stat fstat;
 int blksize;
 int opt_direct;

 if (argc < 3) {
 fprintf(stderr, “Usage: %s file <b/d(buffered/direct)> <hint>\n”, argv[0]);
 return 1;
 }

 if (strncmp(argv[2], “b”, strlen(“b”)) == 0) {
 opt_direct = 0;
 } else if (strncmp(argv[2], “d”, strlen(“d”)) == 0) {
 opt_direct = 1;
 } else {
 printf(“provide arg 2 as \”b\” or \”d\”\n”);
 exit(0);
 }

 if (opt_direct)
 fd = open(argv[1], O_CREAT|O_RDWR|O_DIRECT, 0644);
 else
 fd = open(argv[1], O_CREAT|O_RDWR|O_APPEND, 0644);

 if (fd < 0) {
 perror(“open”);
 return 1;
 }

 /* fetch the block size*/
 if (stat(argv[1], &fstat) == 0) {
 blksize = (int)fstat.st_blksize;
 } else {
 perror(“stat”);
 return 1;
 }

 /* Reminder: int posix_memalign(void **memptr, size_t alignment, size_t size); */
 if (posix_memalign((void *)&buf, blksize, BUF_SIZE)) {
 perror(“posix_memalign failed”);
 return 1;
 }

18

 memset(buf, ‘A’, BUF_SIZE);
 hint = atoi(argv[3]);
 ret = fcntl(fd, F_SET_RW_HINT, &hint);
 if (ret < 0) {
 perror(“fcntl: F_SET_RW_HINT”);
 return 1;
 }

 ret = fcntl(fd, F_GET_RW_HINT, &hint);
 if (ret < 0) {
 perror(“fcntl: F_GET_RW_HINT”);
 return 1;
 }
 printf(“Hint fetched from file : %ld\n”, hint);

 ret = write(fd, buf, BUF_SIZE);
 if (ret < 0) {
 printf(“Couldn’t write to the file\n”);
 } else {
 printf(“Written %d bytes to the file\n”, ret);
 }

 printf(“%s: hint %s\n”, argv[1], str[hint]);
 close(fd);
 return 0;
}

#cc -o whint <above_program.c>

/* Direct IO */
./whint /mnt/a.txt d 3

/* Buffered IO */
./whint /mnt/b.txt b 4

9.2 Filesystem-driven placement

Shown below is the “bio” data structure that file-systems use to form the I/O request.
The file system can pass lifetime information by setting the “bi_write_hint” value.

struct bio {

		 struct bio			 *bi_next; /* request queue link */

		 struct block_device	 *bi_bdev;

		 blk_opf_tbi_opf; /* bottom bits REQ_OP, top bits req_flags. */

		 unsigned short		 bi_flags; /* BIO_* below */

		 unsigned short		 bi_ioprio;

		 enum rw_hint		 bi_write_hint;

 ...

}

19

10. SPDK – Storage Performance Development Kit
The Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing high performance, scalable,

user-mode storage applications (source - https://github.com/spdk/spdk). SPDK achieves high performance by moving all of the

necessary drivers into user space and operating in a polled mode instead of relying on interrupts, which avoids kernel context

switches and eliminates interrupt handling overhead. FDP support was added to SPDK with v23.05 release. This list shows the

currently supported FDP features.

FDP configuration

Reclaim unit handle usage	

FDP statistics

FDP events

Flexible data placement

FDP Events

Write with hints

I/O management send

I/O management receive

Namespace create / delete

Log pages

Set / Get Features

I/O commands

Namespace management

Specifics FDP Commands

Yes

Yes

Yes

Yes

•	 Get feature - Yes
•	 Set feature - No (i.e. can’t enable disable FDP)

Yes: Both Set and Get features

•	 SGL - Yes
•	 PRP - No

Yes: Reclaim unit handle update

Yes: Reclaim unit handle status

No

Supported

Example

SPDK has a dedicated sample test application that can be used to test all the supported FDP features:

•	 https://github.com/spdk/spdk/blob/master/test/nvme/fdp/fdp.c

The following output from an emulated FDP device under qemu demonstrates the sample test application in use.

20

./scripts/setup.sh
0000:00:04.0 (1af4 1001): Active devices: mount@vda:vda1, so not binding PCI dev
0000:00:03.0 (1b36 0010): nvme -> uio_pci_generic

./test/nvme/fdp/fdp
Initializing NVMe Controllers
Attaching to 0000:00:03.0
Controller supports FDP Attached to 0000:00:03.0
Namespace ID: 1 Endurance Group ID: 1
Initialization complete.

==================================
== FDP tests for Namespace: #01 ==
==================================

Get Feature: FDP:
=================
 Enabled: Yes
 FDP configuration Index: 0

FDP configurations log page
===========================
Number of FDP configurations: 1
Version: 0
Size: 96
FDP Configuration Descriptor: 0
 Descriptor Size: 80
 Reclaim Group Identifier format: 2
 FDP Volatile Write Cache: Not Present
 FDP Configuration: Valid
 Vendor Specific Size: 0
 Number of Reclaim Groups: 2
 Number of Reclaim Unit Handles: 4
 Max Placement Identifiers: 128
 Number of Namespaces Supported: 256
 Reclaim unit Nominal Size: 6000000 bytes
 Estimated Reclaim Unit Time Limit: Not Reported
 RUH Desc #000: RUH Type: Initially Isolated
 RUH Desc #001: RUH Type: Initially Isolated
 RUH Desc #002: RUH Type: Initially Isolated
 RUH Desc #003: RUH Type: Initially Isolated

FDP reclaim unit handle usage log page
======================================
Number of Reclaim Unit Handles: 4
 RUH Usage Desc #000: RUH Attributes: Unused
 RUH Usage Desc #001: RUH Attributes: Host Specified
 RUH Usage Desc #002: RUH Attributes: Host Specified
 RUH Usage Desc #003: RUH Attributes: Host Specified

21

FDP statistics log page
=======================
Host bytes with metadata written: 0
Media bytes with metadata written: 0
Media bytes erased: 0

FDP Reclaim unit handle status
==============================
Number of RUHS descriptors: 6
RUHS Desc: #0000 PID: 0x0000 RUHID: 0x0001 ERUT: 0x00000000 RUAMW: 0x0000000000006000
RUHS Desc: #0001 PID: 0x4000 RUHID: 0x0001 ERUT: 0x00000000 RUAMW: 0x0000000000006000
RUHS Desc: #0002 PID: 0x0001 RUHID: 0x0002 ERUT: 0x00000000 RUAMW: 0x0000000000006000
RUHS Desc: #0003 PID: 0x4001 RUHID: 0x0002 ERUT: 0x00000000 RUAMW: 0x0000000000006000
RUHS Desc: #0004 PID: 0x0002 RUHID: 0x0003 ERUT: 0x00000000 RUAMW: 0x0000000000006000
RUHS Desc: #0005 PID: 0x4002 RUHID: 0x0003 ERUT: 0x00000000 RUAMW: 0x0000000000006000

FDP write on placement id: 0 success

Set Feature: Enabling FDP events on Placement handle: #0 Success

IO mgmt send: RUH update for Placement ID: #0 Success

Get Feature: FDP Events for Placement handle: #0
========================
Number of FDP Events: 6
FDP Event: #0 Type: RU Not Written to Capacity Enabled: Yes
FDP Event: #1 Type: RU Time Limit Exceeded Enabled: Yes
FDP Event: #2 Type: Ctrlr Reset Modified RUH’s Enabled: Yes
FDP Event: #3 Type: Invalid Placement Identifier Enabled: Yes
FDP Event: #4 Type: Media Reallocated Enabled: No
FDP Event: #5 Type: Implicitly modified RUH Enabled: No

FDP events log page
===================
Number of FDP events: 1
FDP Event #0:
 Event Type: RU Not Written to Capacity
 Placement Identifier: Valid
 NSID: Valid
 Location: Valid
 Placement Identifier: 0
 Event Timestamp: 2
 Namespace Identifier: 1
 Reclaim Group Identifier: 0
 Reclaim Unit Handle Identifier: 1

FDP test passed

22

11. xNVMe – Cross-platform NVMe Library
xNVMe provides a user space library libxnvme and a suite of tools and libraries that work with NVMe devices. The
NVMe driver being used by libxnvme is re-targetable, and can be any one of the GNU/Linux Kernel NVMe driver via
libaio, IOCTLs and io_uring, the SPDK NVMe driver, or your own custom NVMe driver.

•	 Source — https://github.com/OpenMPDK/xNVMe
•	 Getting started — https://xnvme.io/docs/latest/

FDP support was added to xNVMe with the v0.7.0 release. These included changes to the APIs for new log pages,
new feature identifiers, write with new directive, and the new I/O management commands. The xnvme and lblk tools
have been modified to allow the end user to test these functionalities.

•	 To list out the supported commands by these tools

 #xnvme --help

•	 For a specific command

 #xnvme log-fdp-config --help

This shows a list of arguments that can be provided with the tool xnvme. Arguments in [] are optional
whereas all other arguments are mandatory.

Example

// Bit 19 is set to 1, for FDP to be supported
$ xnvme idfy-ctrlr /dev/ng0n1 | grep ctratt
 ctratt: 0x88010

// 512 bytes data buffer, endurance group id as log specific identifier field
$ xnvme log-fdp-config /dev/ng0n1 --lsi 0x1 --data-nbytes 512
Allocating and clearing buffer...
Retrieving FDP configurations log page ...
xnvme_spec_log_fdp_conf:
 ncfg: 0
 version: 0
 size: 96
 config_desc: 0
 ds: 80
 fdp attributes: { rgif: 2 fdpvwc: 0 fdpcv: 1 val: 0x82 }
 vss: 0
 nrg: 2
 nruh: 4
 maxpids: 127
 nns: 256

23

 runs: 100663296
 erutl: 0
 - ruht[0]: 1
 - ruht[1]: 1
 - ruht[2]: 1
 - ruht[3]: 1

// Probe if fdp is enabled and what fdp configuration index is present from fdp config log
page
$ xnvme feature-get /dev/ng0n1 --fid 0x1d --cdw11 0x1
cmd_gfeat: {nsid: 0x1, fid: 0x1d, sel: 0x0}
feat: { fdpe: 1, fdpci: 0 }

// Write 4 lba at start lba 0, to placement ID 1
$ lblk write-dir /dev/ng0n1 --slba 0x0 --nlb 3 --dtype 2 --dspec 0x1
Writing nsid: 0x1, slba: 0x0000000000000000, nlb: 3
Alloc/fill dbuf, dbuf_nbytes: 16384
Preparing and sending the command...

// 4 LBAs or 16K written
$ xnvme log-fdp-stats /dev/ng0n1 --lsi 0x1
Allocating and clearing buffer...
Retrieving FDP statistics log page ...
xnvme_spec_log_fdp_stats:
 hbmw: [16384, 0]
 mbmw: [16384, 0]
 mbe: [0, 0]

// Fetch the reclaim unit handle usage log page for 4 RUH
$ xnvme log-ruhu /dev/ng0n1 --lsi 0x1 --limit 4
Allocating and clearing buffer...
Retrieving ruhu-log ...
4 reclaim unit handle usage:
xnvme_spec_log_ruhu:
 nruh: 4
 - ruhu_desc[0]: 0
 - ruhu_desc[1]: 0x1
 - ruhu_desc[2]: 0x1
 - ruhu_desc[3]: 0x1

// Enable all supported fdp events placement handle 0x0
$ xnvme set-fdp-events /dev/ng0n1 --fid 0x1e --feat 0xFF0000 --cdw12 0x1
cmd_sfeat: {nsid: 01, fid: 0x1e, save: 0x0, feat: 0xff0000, cdw12: 0x1}

// Create an event, by updating reclaim unit handle, for placement ID 0x0
$ xnvme fdp-ruhu /dev/ng0n1 --pid 0x0
Updating ruh ...

// Fetch the log page for FDP event.
$ xnvme log-fdp-events /dev/ng0n1 --nsid 0x1 --limit 1 --lsi 0x1 --lsp 0x1
Allocating and clearing buffer...
Retrieving fdp-events-log ...

24

1 fdp events log page entries:
xnvme_spec_log_fdp_events:
 nevents: 1
 - {type: 0, fdpef: 0x7, pid: 0, timestamp: 564658057972825, nsid: 1, rgid: 0, ruhid: 1, }

// Fetch the enabled FDP events
$ xnvme feature-get /dev/ng0n1 --fid 0x1e --cdw11 0xFF0000 --data-nbytes 510
cmd_gfeat: {nsid: 0x1, fid: 0x1e, sel: 0x0}
nevents: 6 }
{ type: 0, event enabled: 1 }
{ type: 0x1, event enabled: 1 }
{ type: 0x2, event enabled: 1 }
{ type: 0x3, event enabled: 1 }
{ type: 0x80, event enabled: 0 }
{ type: 0x81, event enabled: 0 }

// Reclaim unit handle status
$ xnvme fdp-ruhs /dev/ng0n1 --limit 6
Allocating and clearing buffer...
Retrieving ruhs ...
6 reclaim unit handle status:
xnvme_spec_ruhs:
 nruhsd: 6
 - ruhs_desc[0] : { pi: 0 ruhi: 1 earutr: 0 ruamw: 24576}
 - ruhs_desc[1] : { pi: 16384 ruhi: 1 earutr: 0 ruamw: 24576}
 - ruhs_desc[2] : { pi: 1 ruhi: 2 earutr: 0 ruamw: 24572}
 - ruhs_desc[3] : { pi: 16385 ruhi: 2 earutr: 0 ruamw: 24576}
 - ruhs_desc[4] : { pi: 2 ruhi: 3 earutr: 0 ruamw: 24576}
 - ruhs_desc[5] : { pi: 16386 ruhi: 3 earutr: 0 ruamw: 24576}

12. Application Enablement – CacheLib
A detailed documentation on the FDP setup in CacheLib is being integrated to the CacheLib website. The PR for the
same and details can be found at https://github.com/facebook/CacheLib/pull/308.

12.1 Purpose of FDP support in CacheLib

CacheLib’s BigHash and BlockCache engines of the SSD Cache layer (Navy) produce distinct IO patterns on the SSD. BigHash
generates a random write pattern while BlockCache generates a sequential write pattern.

In a conventional SSD, these writes get mixed up in the physical NAND media. This intermixing can lead to a higher SSD Write
Amplification Factor (WAF). To combat this in production environments CacheLib uses up to 50% of the SSD as host over-
provisioning (https://www.usenix.org/system/files/osdi20-berg.pdf).

25

The Flexible Data Placement (FDP) support within CacheLib aims to segregate the BigHash and BlockCache data of CacheLib
within the SSDs. This reduces the device WAF even when configured with 0% host over-provisioning and improves device
endurance. FDP support within Navy is optional.

The FDP support for CacheLib has been upstreamed and can be found at: https://github.com/facebook/CacheLib
(the closed PR: https://github.com/facebook/CacheLib/pull/277).

For more details on BigHash and BlockCache and other CacheLib specific information, refer to https://cachelib.org/.

12.2 Setting up CacheLib code and FDP device for testing

12.2.1 Prerequisites

Install nvme-cli, libnvme, and liburing following the steps mentioned in the “Software Prerequisites for FDP” section.

12.2.2 Build

		 $ git clone https://github.com/facebook/CacheLib
		 $ cd CacheLib
		 $./contrib/build.sh -j -T

		 # The resulting library and executables:
		 $./opt/cachelib/bin/cachebench –help

Note: For more information on build options, refer to https://cachelib.org/docs/installation

12.2.3 Set up a device with FDP enabled

Refer to the “FDP Drive Initialization” and “Configuring FDP on the NVMe device” sections and set up the SSD with FDP enabled.

12.2.4 Run CacheBench to test FDP-enabled CacheLib:

The CacheLib production workload traces of KV Cache can be obtained and run using the following steps.

26

1.	 Install and set up the AWS CLI.

2.	 Download the tracedata.

 $ aws s3 cp --no-sign-request --recursive s3://cachelib-workload-sharing/pub/
 kvcache/202206/ ./

3.	 Use an editor to add flags into the config_kvcache.json file to run CacheLib with FDP enabled.

$ vi ./config_kvcache.json

Add the following flags in the “cache_config” section.

“navyQDepth”: 1,

“navyEnableIoUring”: true,

“deviceEnableFDP”: true,

		 A sample config file looks like:

“cache_config”:
 {
 “cacheSizeMB”: 20000,
 “cacheDir”: “/root/cachelib_metadata-1”,
 “allocFactor”: 1.08,
 “maxAllocSize”: 524288,
 “minAllocSize”: 64,
 “navyReaderThreads”: 72,
 “navyWriterThreads”: 36,
 “nvmCachePaths”: [“/dev/nvme0n1”],
 “nvmCacheSizeMB” : 878700,
 “writeAmpDeviceList”: [“nvme0n1”],
 “navyBigHashBucketSize”: 4096,
 “navyBigHashSizePct”: 4,
 “navySmallItemMaxSize”: 640,
 “navySegmentedFifoSegmentRatio”: [1.0],
 “navyHitsReinsertionThreshold”: 1,
 “navyBlockSize”: 4096,
 “deviceMaxWriteSize”: 262144,
 “nvmAdmissionRetentionTimeThreshold”: 7200,
 “navyParcelMemoryMB”: 6048,
 “enableChainedItem”: true,
 “htBucketPower”: 29,
 “navyQDepth”: 1,
 “navyEnableIoUring”: true,
 “deviceEnableFDP”: true,
 “moveOnSlabRelease”: false,
 “poolRebalanceIntervalSec”: 2,
 “poolResizeIntervalSec”: 2,
 “rebalanceStrategy”: “hits”
 },

27

4.	 Execute the KV Cache trace workload cachebench.

 $./opt/cachelib/bin/cachebench --json_test_config=./config_kvcache.json --progress=600
 --progress_stats_file=cachebench-progress.log > cachebench-run.log 2>&1

Note: For more details on workload traces, refer to
https://cachelib.org/docs/Cache_Library_User_Guides/Cachebench_FB_HW_eval

12.3 Results

Using FDP along with CacheLib resulted in greatly improved device WAF when tested with the KV Cache
production workload.

 “test_config”:
 {
 “opRatePerSec”: 1000000,
 “opRateBurstSize”: 200,
 “enableLookaside”: false,
 “generator”: “replay”,
 “replayGeneratorConfig”:
 {
 “ampFactor”: 200
 },
 “repeatTraceReplay”: true,
 “repeatOpCount” : true,
 “onlySetIfMiss” : false,
 “numOps”: 100000000000,
 “numThreads”: 10,
 “prepopulateCache”: true,
 “traceFileNames”: [
 “kvcache_traces_1.csv”,
 “kvcache_traces_2.csv”,
 “kvcache_traces_3.csv”,
 “kvcache_traces_4.csv”,
 “kvcache_traces_5.csv”
]
 }
}

The WAF at 100% utilization of the SSD for the NVM Cache without FDP was ~3.2 and this stayed at ~
1 with FDP.

	No degradation was observed, with or without FDP, for metrics like latency, throughput, etc.

	FDP enablement introduced no additional application-level WAF.

28

13. QEMU Emulation Support
QEMU is an open source emulator and virtualizer, supporting emulation of NVMe FDP devices since v8.0. This platform can be

used to experiment and familiarize yourself with FDP features. It can also be used for functional verification of newly developed

FDP features and applications.

To configure the QEMU emulated NVMe device for FDP support, first, create a file to back the namespace. This example creates

a 1 GB file.

 $ qemu-img create -f raw data.img 1G

Because FDP is a feature that is enabled at the Endurance Group level, it is necessary to configure an “NVMe Subsystem” device

that will serve as the Endurance Group “container” and configure some FDP values on it. Adding such a device requires the

following command line parameter for QEMU.

 -device “nvme-subsys,id=nvme-

 subsys0,fdp=on,fdp.runs=96M,fdp.nrg=1,fdp.nruh=16”

This configures the endurance group with a reclaim unit nominal size of 96M (fdp.runs), 1 reclaim group (fdp.nrg), and 16 reclaim

unit handles (fdp.nruh).

The next command configures the controller and sets it up to be linked to the subsystem.

 -device “nvme,id=nvme0,serial=deadbeef,subsys=nvme-subsys0”

It is necessary to create a namespace. The following command configures both the “drive” (file) that holds the data and the

emulated NVMe namespace.

 -drive “id=fdp-1,file=data.img,format=raw,if=none -device nvme-ns,id=fdp-1,drive=fdp-

 1,nsid=1,fdp.ruhs=1-15”

At this point, reclaim unit handles 1 through 15 (both inclusive) will be assigned to the namespace. Reclaim unit handle 0 will

remain as a controller-specified reclaim unit handle – if other namespaces are added to the subsystem without fdp.ruhs being

specified, they will automatically use reclaim unit handle 0.

fdp.ruhs accepts a semi-colon (“;”) separated list of identifiers and may include ranges. For example, to assign reclaim unit

handle 1, 2, 3 and 8, set fdp.ruhs to “1-3;8” which will yield the same result as “1,2,3,8”.

Putting it all together, an example full QEMU command line could be:

29

qemu-system-x86_64 \
 -nodefaults \
 -display “none” \
 -machine “q35,accel=kvm” \
 -cpu “host” \
 -smp “4” \
 -m “8G” \
 -netdev “user,id=net0,hostfwd=tcp::2222-:22” \
 -device “virtio-net-pci,netdev=net0” \
 -device “virtio-rng-pci” \
 -drive “id=boot,file=boot.qcow2,format=qcow2,if=virtio” \
 -device “nvme-subsys,id=nvme-subsys0,fdp=on,fdp.runs=96M,fdp.nrg=1,fdp.nruh=16” \
 -device “nvme,id=nvme0,serial=deadbeef,bus=pcie_root_port1,subsys=nvme-subsys0” \
 -drive “id=fdp-1,file=fdp-1.img,format=raw,if=none” \
 -device “nvme-ns,id=fdp-1,drive=fdp-1,nsid=1” \
 -drive “id=fdp-2,file=fdp-2.img,format=raw,if=none” \
 -device “nvme-ns,id=fdp-2,drive=fdp-2,nsid=2,fdp.ruhs=1-15” \
 -serial “mon:stdio”

The example shown creates two namespaces within the same endurance group. Since namespace 1 does not specify fdp.ruhs,

the controller will assign reclaim unit handle 0 and make it the controller-specified reclaim unit handle.

Boot it up and use the tools specified above to interact with it!

Things to note:

•	 The FDP stats and accounting are not persisted across invocations.

•	 QEMU NVMe emulation does not support Namespace Management, so FDP configuration must be set statically.

•	 The emulation differs slightly from the spec by always enabling FDP on the Endurance Group if fdp=on is set.

About Samsung Electronics Co., Ltd.
Samsung Electronics Co. Ltd inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the
worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, memory, system LSI and LED solution. For the latest
news, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2024 Samsung Electronics Co., Ltd. All rights reserved. Samsung is a registered trademark of Samsung Electronics Co., Ltd. Specifications and designs are subject
to change without notice. Nonmetric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or
omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Fio is a registered trademark of Fio Corporation. Intel is a trademark of Intel Corporation in the U.S. and/or other countries. Linux is a registered trademark of Linus Torvalds. PCI
Express and PCIe are registered trademarks of PCI-SIG. Toggle is a registered trademark of Toggle, Inc.

Samsung Electronics Co., Ltd.
129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16677, Korea www.samsung.com 1995-2021

For more information
For more information about the Samsung Semiconductor products, visit semiconductor.samsung.com.

http://news.samsung.com
http://semiconductor.samsung.com

